
JULY 1995 Delphi INFORMANT ▲ 1

ON THE COVER

6 The DBTracker Utility — John O’Connell
“Did the record post?” It’s a question of data integrity,
and any database veteran can tell you the importance of
knowing when critical database events occur. Mr O’Connell
provides us with an invaluable tool for tracking these elu-
sive events.

16 Moving to Local InterBase — Marco Cantù
Although “real” client/server topology calls for separate client
and server processors, Mr Cantù points out that you can
obtain many of the benefits of a SQL server by moving your
data to the Local InterBase product that comes with Delphi.

FEATURES

21 DBNavigator — Cary Jensen, Ph.D.
Dr Jensen continues his exploration of the TField object.
This month’s topics include calculated fields, using the
OnCalcFields event to display lookup data, and how to
manipulate the creation order of objects so they are there
when you need them.

26 Informant Spotlight — Robert Vivrette
One of the (extraordinarily) few complaints you’ll hear
about Delphi is “Why are the executables it creates so
big?” The short answer is that Delphi makes you pay
once, up front for a multitude of Windows niceties. And as
Mr Vivrette explains — it’s a bargain.

31 OP Tech — Bill Todd
The Memo component is cool, no doubt, but it does lack
some important cursor controlling functionality.
Fortunately, thanks to Mr Todd and a couple of Windows
API messages, it’s just not a problem.

34 Visual Programming — Sedge Simons
It ain’t Object Pascal, but it is a vital portion of every
Delphi form. Mr Simons introduces the .DFM file, explains
its function, and describes how developers might exploit it
to perform a number of programming tasks.

REVIEWS

37 Developers Visual Suite Deal
Product review by Douglas Horn

40 Instant Delphi Programming
Book review by Jerry Coffey

40 Delphi by Example
Book review by Jerry Coffey

41 teach yourself...Delphi
Book review by Jerry Coffey

DEPARTMENTS

2 Delphi Tools

4 Newsline

July 1995 - Volume 1, Number 3

Wo r k i n g
with Data

Delphi as a Database Front-End

Cover Art By: Victor Kongkadee

JULY 1995

Delphi Training

HTR, Inc. is an authorized
Delphi Training center offering

two Delphi classes: Client/Server
Application Development Using

Delphi and Advanced
Client/Server Application

Development. The classes run
through July at various

cities nationwide.
The three-day Client/Server

Application Development Using
Delphi class costs US$1050,
and Advanced Client/Server
Application Development is a

two-day event priced at US$700.
For more information, or to
enroll, call (301) 881-1010.

Delphi
T O O L S

New Products
and Solutions
Pinnacle’s Graphic Server Ships

Pinnacle Publishing of

Kent, WA has upgraded its
Graphics Server. Its improved
tool kit, Graphics Server 4.0,
allows developers to add
graphing and charting features
to their Windows applications.

Graphics Server 4.0 includes
16 and 32-bit versions of its
DLLs, so it allows graphing
functionality to be ported
from Windows 3.1 to
Windows 95 and Windows
NT 3.5 with no change in
code. In addition to standard
16-bit VBXes, developers will
be able to use 16 and 32-bit
OLE custom controls (OCX).

It also features an editing
interface that allows users to
change graph type, style, per-
spective, and other parameters
with simple button clicks.
Graphs can be edited through
either the toolbar or dialog
box invoked by right-clicking
with the mouse.

Graphic Server’s graphing
capabilities were also upgraded
for this new release. These
include true 3D graphs that
users can rotate on their X or
Y axis. The point of view can
be interactively moved above
or below the horizon for view-
ing multiple data sets. Four
new graph types have been
added including box-whisker,
candlestick, surface, and time-
series, plus three new varia-
tions on existing types: lin/log,
log/log, and open-high-low-
close. Statistical functions have
also been augmented with the
addition of spline and moving
average curve fits, error bars,
and a new Fast Fourier
Transform function that
enables users to transform data
into the frequency domain.

Price: US$299

Contact: Pinnacle Publishing, 18000
72nd Avenue South, Suite 217, Kent, WA
98032

Phone: (800) 788-1900, or (206)
251-1900

Fax: (206) 251-5057
Sax Software Announces Sax Comm Objects

Sax Software of Eugene,

OR has begun shipping Sax
Comm Objects v 2.0
Professional Edition, a package
that combines Sax Comm
Objects and the Sax Basic
Engine scripting language.
Using the Professional Edition,
developers can write serial com-
munications programs that
include customized common
dialog boxes. The Professional
Edition includes the Standard
Edition of Sax Comm Objects.
Because the Standard Edition is
a custom control, it provides all
the VBX and OCX power need-
ed to get connected. It supports
the most popular file-transfer
protocols, including ZModem,
YModem, XModem, Kermit,
and CompuServe B+.

The built-in terminal emula-
tion lets developers create
Windows front-ends for char-
acter-based programs such as
those used by UNIX systems
or by many on-line services.

Sax Basic Engine is a custom
control that offers developers a
Basic-syntax scripting lan-
guage. The comm extensions
are written specifically by Sax
Software to make joining the
Comm Objects and the Basic
Engine with a single function
call. The Professional Edition
includes complete source code
for Sax Comm Objects and for
the comm extensions to the
Basic Engine.

Sax Software charges no roy-
alties or run-time fees, and all
Sax Software products include
an unconditional 30-day
money-back guarantee.

Price: US$495.

Contact: Sax Software, 950 Patterson
Street, Eugene, OR 97401

Phone: (503) 344-2235

Fax: (503) 344-2459
Delphi INFORMANT ▲ 2

JULY 1995

New Delphi Books

Delphi Programming EXplorer
By Jeff Duntemann,

Jim Mischel, & Don Taylor
Coriolis Group Books
ISBN: 1-883577-25-X

Delphi Programming EXplorer
alternatively covers the theory and
practice of Delphi programming.
It also addresses Object Pascal

basics, object-oriented program-
ming, and includes VB to Delphi

conversion tips.
Price: US$39.99 (627 pages), disk

Phone: (800) 410-0192

Using Delphi, Special Edition
By John Matcho & David Faulkner

QUE Corporation
ISBN: 1-56529-823-3

Using Delphi, Special Edition targets
intermediate to expert programmers,

and stresses application
development and delivery.

Coverage includes database
programming, ReportSmith, DDE,
OLE, DLLs, and the Windows API.

Price: US$29.99 (573 pages)
Phone: (317) 581-3500

Delphi
T O O L S

New Products
and Solutions
Free Trial-Run Components for Delphi from TurboPower

TurboPower Software, of

Colorado Springs, CO has
announced a free, Trial-Run ver-
sion of Orpheus, a collection of
native VCL data entry compo-
nents for Delphi. The Trial-Run
components offer the full func-
tionality of Orpheus, but run
only when the Delphi develop-
ment environment is running.
The free tools include abbreviat-
ed on-disk documentation.

Orpheus includes validated
data-aware fields for string,
numeric, currency, and
date/time variables. It has a
form controller for managing
validation error events and con-
figurable command/key map-
pings. It features a text editor
with 16MB capacity,
undo/redo, word wrap, and
more. Orpheus includes a list
box with unlimited capacity,
multiple selection and colors,
along with a notebook page
with Windows 95-style top or
side tabs.

It has a flexible table that
holds edit fields, combo boxes,
bitmaps, checkboxes, and more.
It also includes two, four, and
five-way spinners. The compo-
nents in Orpheus are native
VCL components.

The free tools are available on
the Delphi Informant Compan-
ion Disk and for download
from the Informant Forum on
CompuServe (ICGFORUM).
Library 12: Delphi 1.x. File
name: ORPHEUS.ZIP. The
file is also available from the
Informant Bulletin Board at
(916) 686-4740. Library
name: DIWINLIB. In addi-
tion, it’s available on Internet
(ftp from rmii.com:/pub2/tur-
bopower) and from the
TurboPower BBS.

Price: US$199, includes full source, com-
prehensive printed documentation, free
support from Delphi experts by phone, e-
mail, and fax, and a 60-day money-back
guarantee.

Contact: TurboPower, P.O. Box 49009,
Colorado Springs, CO, 80949-9009

Phone: (719) 260-6641

Fax: (719) 260-7151

TurboPower BBS: (719) 260-9726
Access Mainframe Data from PC with TransPortal PRO

The Frustum Group, Inc.

of New York, NY has released
TransPortal PRO, version 4.1.
This data exchange toolkit
integrates PC applications
with on-line host screen based
applications.

Developers can create PC
front-ends for complicated or
unfriendly host systems. PC
applications using TransPortal
PRO can retrieve host data in
real time. TransPortal PRO
requires no additional main-
frame software and follows
existing terminal security pro-
cedures. TransPortal PRO
works with more than 30 PC
programming languages in
DOS, Microsoft Windows,
and OS/2 using the same syn-
tax and one function call.

TransPortal PRO documen-
tation includes sample code
for all supported languages,
on-line help in Windows and
DOS, enhancements to
Gupta SQL Windows, a new
installation program, and
improvements to TurboMap.
Using TurboMap, PC pro-
grammers can automate com-
plicated mainframe terminal
operator procedures.

Price: US$2450

Contact: The Frustum Group, Inc., 525
North Broadway, White Plains, NY 10603

Phone: (914) 428-7200 or
(800) 548-5660

Fax: (914) 428-0795
Delphi INFORMANT ▲ 3

JULY 1995

News
L I N E

Ju l y 1995

Softbite International, Borland
International, and Informant
Communications Group have

announced two additional interna-
tional dates for the 1995 Delphi

World Tour. The event is scheduled
to stop in London on October 12-
13, and Amsterdam on October
16-17. Other international dates
are planned, but no details were

available at press time.
In the US, the two-day seminar is
scheduled to stop in Columbus,

Boston, Los Angeles, Philadelphia,
Chicago, Seattle, Dallas, New York,
Atlanta, San Francisco, Washington
DC, Denver, Minneapolis, Orlando,

Phoenix, Detroit, Houston, and
Raleigh/Charlotte.

For more information contact Softbite
International by calling (708) 833-

0006, or sending an e-mail to regis-
ter@softbite.mhs.compuserve.com.

Informant Communications
Group has secured Synectics

Software as their African distribu-
tor of Delphi Informant and

Paradox Informant Magazines.
Synectics Software territories include:

Republic of South Africa, Lesotho,
Swaziland, Namibia, Botswana,

Zimbabwe, Mozambique, Mauritius,
Angola, Zambia, and Malawi.

For information,
call 27 11 789-4316,

fax 27 11 886-5697, or
e-mail 100075,1636.
Borland Developers Conference Heads to San Diego

Scotts Valley, CA — Borland
International has announced
their 6th Annual Borland
Developers Conference is slat-
ed for August 6-9, 1995, in
San Diego, CA. Housed in
the San Diego Conference
Center, the event will spot-
light four product-specific
tracks: Delphi, Paradox,
dBASE, and Borland C++.

Focusing on Paradox appli-
cation development in
Windows and Windows 95,
the Paradox sessions will cover:
using interface design, event-
driven programming, and real-
world Paradox programming
solutions. Specific topics
include: Leveraging Windows
95 in Paradox Application
Development, Multi-Form
Application Development,
Upsizing: Programming
ObjectPAL and SQL, Security
in Paradox Applications,
Programming Paradox for
Windows with OLE 2.0, and
Delivering and Deploying
Paradox Applications.

The Delphi tracks will pre-
sent a thorough introduction
to Delphi, including the
Delphi object model, visual
programming environment,
client/server development, and
much more. Specific topics
include: Delphi and Windows
95, Rapid Application
Development with Delphi,
Visual Programming with
Delphi, Creating Delphi
Components, Using Borland
C++ DLLs with Delphi,
Object-Oriented Application
Design, The Delphi Object
Model, Accessing Data with
Delphi, Client/Server Issues for
Delphi, Delphi Exception
Handling, Delphi SQL pro-
gramming, and OLE 2.0
Programming with Delphi.

For dBASE, Borland focuses
on programming dBASE
applications in Windows and
Windows 95. It addresses
issues such as solutions, pro-
gramming, tools and tech-
niques, and more. The
Borland C++ sessions teach
C++ Windows and Windows
95 programming techniques
including templates, Object
Windows Programming,
exception handling, and DLL
programming.

Borland is also offering elec-
tive tracks on emerging indus-
try trends, business solutions,
hardware, and operating system
issues, InterBase, ReportSmith,
and many others. Those
attending a track will receive
the appropriate technical paper,
source code, and examples.
The conference registra-
tion prices are: single,
US$1195, and 3 or more
from the same company,
US$1145 each. Each
attendee is eligible to receive
one free Borland product:
Delphi for Windows (CD-
ROM), Paradox for
Windows (CD-ROM or 3
1/2 disks), Borland C++ 4.5
(CD-ROM), or dBASE for
Windows (CD-ROM or 3
1/2 disks).

Attendees may also attend
pre-conference tutorial avail-
able on Sunday August 6 and
receive a free lunch.

To register call Borland at
(800) 350-4244.
Delphi Updates Available

Scotts Valley, CA — Borland
International has released
Delphi update files. The
updates are contained in three
files: DELCSPAT.ZIP for
Delphi Client/Server Edition
(including VCL patches);
DELPATCH.ZIP for Delphi
Desktop Edition; and
VCLPATCH.ZIP, for updat-
ing Desktop Edition users’
VCL code.

According to the readme file
provided with the update files,
the following problems have
been addressed: improved
compatibility with Windows 95
M8 beta for MDI (e.g. new
child) and OLE2 (e.g. insert
object); IDE debugger compati-
bility fix for Windows NT;
fixed MDI design mode prob-
lem when minimizing MDI
Child window; significant
updates to OLE2 API unit (see
\DELPHI\DOC\OLE2.INT);
fixed unit version problem in
DLIB.EXE; fixed problem in
Browser when you double-click
a reference to a .PAS file that is
not already open in the editor;
fixed Options | Rebuild
Library problem when the cur-
rent project has an active
Dataset; fixed AF problem
in Grid control; fixed DBGrid
to allow cancel of SetKey mode;
TForm.DefineProperty now calls
its inherited method; support
for owner draw in TOutline;
DBImage.CutToClipboard now
correctly updates the Clipboard;
in TDataSource.OnDataChange,
fixed invalid pointer in the
Field Parameter; fixed various
demo problems.

In addition, Borland has
released the Delphi VCL
Reference Manual and Object
Pascal Language Reference in
Adobe Acrobat format. These
manuals are also available in
hard copy for an additional
fee. For information call
Borland at (408) 431-1000.
Note: Both manuals are
already available as Windows
on-line Help with the CD-
ROM release of Delphi and
Delphi Client/Server.

The update files and manu-
als are available for download
from the Delphi Forum on
CompuServe, Library 2.
Delphi INFORMANT ▲ 4

JULY 1995

News
L I N E

Ju l y 1995

Borland International Inc.
recently posted a US$51 million

loss for the fourth quarter of fiscal
1995 (ending March 31st), but
it’s less than the US$76 million

loss from the fourth quarter of last
year. Also, revenues increased 9
percent to US$55.5 million from

US$51 million in 1994.
The company also reported a loss
of US$12.2 million, or 43 cents a
share for fiscal 1995. Compared
to a loss of US$69.9 million, or

US$2.62 a share for fiscal 1994,
Borland is looking stronger.

Borland’s president Gary Wetsel
said the company was pleased
with its progress. According to

Wetsel, Borland had three prima-
ry objectives during the last quar-
ter: to reduce the cost structure,
focus on the software developer

market, and launch Delphi.

Coming to Chicago July 25 - 28,
Windows World and Enterprise

Computing Solutions will be
held simultaneously at the

McCormick Place.
ECS ’95 covers the four areas of
enterprise computing: hardware
platforms, connectivity, strategic

applications, and operating
environments. Dedicated to
Windows-based enterprise
solutions, Windows World

features information on
client/server products, enterprise

systems and servers, imaging
systems, e-mail, messaging,

Internet links, and new
strategic applications.

To receive a registration form via
fax, call (617) 449-5554 and
enter code 72. Have your fax

number ready and a form will be
faxed to you within 24 hours.
DB/Expo: A Look at Borland’s RAD Pack for Delphi and New dBASE

San Francisco, CA — With
close to 100 new product
announcements and presenta-
tions, DB/Expo attracted
31,108 attendees to the 7th
annual conference and exposi-
tion held May 1-5 at the
Moscone Convention Center
in San Francisco, CA. This
year’s database, client/server,
and networking event featured
900 exhibits from more than
200 IT companies worldwide.

Borland International
announced the release of the
RAD Pack for Delphi, a new
companion tool set that com-
bines many of Borland’s prod-
ucts into one package. It
includes the Visual Component
Library source code and the
Resource Workshop for extract-
ing and modifying standard
Windows resources, such as
icons, cursors, bitmaps, and dia-
log boxes.

It also features a Resource
Expert that converts standard
resource scripts into Delphi
forms, a Delphi Language
Reference Guide, and the Turbo
Debugger. The RAD Pack will
be available through major
resellers or directly from
Borland for US$249.95.

Borland also showed its
dBASE for Windows upgrade,
code-named Voyager. Recently
introduced at Spring
COMDEX, this 16-bit product
is based on visual tools and a
business programming lan-
guage, and will run under both
Windows 3.1 and Windows
’95. It also has client/server fea-
tures and performance enhance-
ments. Borland said a dBASE
compiler for Windows will be
available with Voyager allowing
developers to create and deploy
stand-alone (.EXE) applications
royalty-free. The Voyager
demonstration is part of a
spring tour of trade shows, user
group meetings, training semi-
nars, and other special review
events designed to inform devel-
opers about the new software.

In addition, Microsoft and
Gupta announced they will
market a single product that
combines Gupta’s software
development tools with
Microsoft’s database products.
Other strategic alliances include
BMC Software Inc.’s plans to
distribute DataTools, Inc.’s
backup and recovery products.

DB/Expo New York 1995 is
the event’s next stop. It’s sched-
uled for December 4-8, 1995 at
Jacob K. Javits Center. For
more information contact
Blenheim at (415) 966-8440.
Windows Component
Resource Goes
On-Line

Layton, UT — Imagicom is
now providing a free compre-
hensive component resource
service to Windows develop-
ers. The service has informa-
tion on OCX, VBX, DLL,
and Delphi custom controls
organized by component type,
file format, and vendor.

Imagicom’s service is locat-
ed on a World Wide Web
(WWW) home page and can
be accessed by any Internet
browser. The home page is
similar to an interactive cata-
log, where the user can point-
and-click until the correct
information is found. Once a
developer has selected the
right grouping, a specific
component can be located
from text descriptions, prod-
uct images, and downloadable
demonstration copies.

Vendors can put basic
information about their com-
ponents on the service for
free. Imagicom charges a fee
to maintain higher levels of
service such as downloadable
demonstration copies, inde-
pendent Web pages, and
images of custom controls.

Imagicom’s home page is
http://www.xmission.com/~ima
gicom/. For more information
send e-mail to
imagicom@xmission.com.
Borland’s New Companion Products
Group includes Delphi/Link and Poet

Scotts Valley, CA — Borland
International Inc. is currently
developing its Companion
Products Group, a compila-
tion of utilities and third-party
tools for developers using
Borland and other products.

Its first release, RAD Pack
for Delphi, was launched at
DB/Expo. It’s a new compan-
ion tool set that combines
many of Borland’s products
into one package. The RAD
Pack is now available from
major resellers or directly from
Borland at a suggested retail
price of US$249.95.

Other products in the group
include Delphi/Link for Lotus
Notes from Brainstorm
Technologies, Poet Software
from Poet Software, and
Object Master from ACI.
According to Borland, several
new products are scheduled to
launch just after Windows ’95
is released, including products
supporting Borland languages
and databases, Microsoft’s
Visual Basic, and Powersoft’s
Powerbuilder. A majority of the
tools within Borland’s
Companion Products Group
are priced between US$100
and US$200.

For more information about
the Companion Products
Group or to order the RAD
pack for Delphi, call Borland
at (800) 233-2444 ext.1310.
Delphi INFORMANT ▲ 5

JULY 1995

The DBTracker Utility
Inside Delphi’s Database Control Events

On the Cover
Delphi / Object Pascal / IDAPI

By John O’Connell
D elphi’s database connectivity is based on a number of components that
work together to allow your applications access to database tables. At
a basic level, database access is provided by a component descended

from TDataSet, such as TTable, TQuery, and TStoredProc.

A TTable component provides access to a table’s records via IDAPI — the Borland Database
Engine (BDE). A TQuery retrieves selected records from a table based on selection criteria, and a
TStoredProc enables procedures and functions to be executed on a remote database server. These
components are known collectively as datasets.

The TDataSource component is the link between data-aware controls such as TDBEdit or
TDBGrid and a dataset. TDataSource is the middle layer in Delphi’s database connectivity scheme.
The TTable component is the lower layer, and data-aware controls are the upper layer.

Another component of Delphi’s database connectivity is the TField component. It allows program-
matic access to a field in the record. The TField object also performs default formatting and vali-
dating of field values. A TField object is created when a dataset is opened at run-time, or at design
time by using the Fields editor for a TDataSet descendant component. In the latter case, properties
and event handlers can be defined for the TField at design time. The list of TFields in a dataset can
be accessed using the Fields array property at run-time. [For an in-depth introduction to TFields,
see Cary Jensen’s article “The TField Class” in the June 1995 Delphi Informant. He continues the
discussion in this month’s article “The TField Class: Part II”, beginning on page 21.]

The TDataSource can be seen as a record buffer between data-aware controls and datasets. The
TTable’s current record is copied to the TDataSource buffer and read by the
data-aware controls using that datasource.
Datasource and dataset components generate notification events at various
stages during manipulation of the database tables associated with them.
This article will discuss the events generated by the TTable dataset and
TDataSource using Paradox tables.

A TTable generates notification events for these reasons:
• The dataset is being opened or closed.
• The dataset is about to enter or exit edit mode.
• The dataset is about to insert or delete a record.
• The dataset is about to post or cancel changes to a record.
Delphi INFORMANT ▲ 6

TDataSet Event When Triggered

BeforeOpen, AfterOpen Before/after a dataset is opened

BeforeClose, AfterClose Before/after a dataset is closed

BeforeInsert, AfterInsert Before/after a dataset enters
Insert mode

BeforeEdit, AfterEdit Before/after a dataset enters
Edit mode

BeforePost, AfterPost Before/after a dataset posts changes
to the current record

BeforeCancel, AfterCancel Before/after a dataset cancels the
current state

BeforeDelete, AfterDelete Before/after a record is deleted

OnNewRecord When a new record has been created

OnCalcFields When calculated fields need to be
recalculated

On The Cover
• A new record has just been created in the dataset.
• A dataset’s calculated field needs recalculation.

A TDataSource generates notification events for the following
reasons:
• The datasource’s view of the record needs to be refreshed.
• The state of the dataset pointed to by the datasource has

changed.
• The data in the current unposted record has changed.

The tables in Figures 1, 2, and 3 list these events and the possi-
ble states for a TTable or TDataSource.

But when do these events occur in an operating database appli-
cation? It would be very useful to track these events as they hap-
pen to understand the order in which events occur in response to
table manipulation by user interaction and Object Pascal code.
Figure 1 (Top): The TDataSet events. Figure 2 (Middle): The
TDataSource events. Figure 3 (Bottom): The State constants.

TDataSource Event When Triggered

OnDataChange When the view of the current record
needs to be refreshed, usually as a
result of moving to another record or
the table being refreshed

OnUpdateData When a field(s) value in the current
record is about to be updated prior
to posting the record

OnStateChange When the mode or state of a dataset
changes

State When Triggered

dsInactive When the dataset is closed

dsBrowse When the dataset is in Browse state

dsEdit When the dataset is in Edit state

dsInsert When the dataset is in Insert state

dsSetKey When the dataset is in SetKey state
(TTable.SetKey has been called)

dsCalcFields When the OnCalcFields event is
called
What DBTracker Does
The DBTracker utility (see Figure 4) does just this for one or
two tables (which can be linked if desired). In this example I’ve
used the CUSTOMER and ORDERS tables (linked one-to-
many) in the DBDEMOS alias created by Delphi. This utility
can be used with several tables without any changes to the source
code (as we’ll discuss later).

DBTracker tracks all TDataSource and TTable events and writes
information about each event to a TListBox component. You can
use the DBNavigator buttons to manipulate the tables, or use the
buttons located in the Methods group box. Each button calls the
named TTable method for the selected datasource’s dataset table.
For instance, this is useful when you want to track the exact
stream of database events resulting from calling TTable.Post.

The table the method buttons call can be chosen from a combo box
labeled Call Method for. It contains the names of all TDataSource
components found in the form at run-time. When DBTracker is
first started, the first TDataSource’s dataset table is affected by the
Methods buttons. The contents of the ListBox with the tracked
database events can be saved to an ASCII text file and the list can
also be emptied.

The master TTable in the form is called tblMaster, the detail
TTable is called tblDetail — these are the datasets for the respec-
tive TDatasource’s dsMaster and dsDetail. The tables are linked
one-to-many by the detail table’s secondary index.

The code behind DBTracker demonstrates a few techniques that
could be used to achieve what may usually be required in a data-
entry application. For example, it enables or disables buttons
depending on the state of a table (or tables) as we’ll see later.

Figure 4 shows the database events triggered just after the dialog box
is displayed, and the master and detail tables are opened by code in
the form’s FormCreate event. Let’s examine this list more closely:
• The master table is opened which triggers BeforeOpen for

tblMaster.
JULY 1995
• Because tblMaster has a calculated field defined, OnCalcFields
is triggered for tblMaster.

• The state for dsMaster and tblMaster changes from dsInactive
to dsBrowse after tblMaster has opened.

• The OnDataChange event occurs for dsMaster when the dis-
played record changes from undefined to the first record in
the master table.

• Finally the AfterOpen event for the master table is triggered.

A similar stream of events occurs for the detail table, tblDetail,
except for the OnCalcFields event because there isn’t a calculated
field defined).
Delphi INFORMANT ▲ 7

On The Cover

Figure 4: The DBTracker utility in action.
Using DBTracker
The buttons in the Methods group box explicitly call various
TTable methods (Insert, Delete, Edit, Post, Cancel, Open, and Close,
respectively). Pressing the equivalent buttons on the navigator
toolbar has the same effect. However, using the Methods buttons
allows you to clearly see what occurs between the moment the rel-
evant TTable method is called, and the moment the method has
completed. To specify which datasource the buttons will act upon,
specify the desired datasource name from the combo box.

The Open and Close buttons allow you to open or close the
TTable associated with the selected datasource. If the linked
detail table dsDetail is closed, then the links between
tblDetail and tblMaster will be ignored. If dsMaster is closed
then tblDetail will effectively be an unlinked table with all
records in view instead of the restricted view that’s in force
when tblMaster is open.

Let’s look at the sequence of events for some common database
usage scenarios.
Database Events for a Single Table
Viewing a Single Record
In this scenario dsMaster is open and dsDetail is closed.
Moving through records or pressing the Refresh button on
the Navigator toolbar causes OnCalcFields followed by
OnDataChange to be triggered. Each time another record is
reached, the dataset tblMaster signals that its calculated field
requires recalculation and the record that the datasource is
pointing to has changed. The OnDataChange event is trig-
gered because the datasource needs to refresh its view of the
record that in turn supplies the data-aware controls with the
new field values for the record.

Pressing the Insert button causes the following chain of events:

BeforeInsert for tblMaster
OnStateChange to dsInsert for dsMaster
Table state change to dsInsert for tblMaster
OnNewRecord for tblMaster
OnDataChange for dsMaster

AfterInsert for tblMaster

Here, the states for dsMaster and tblMaster have changed
from their previous states (which in this case were dsBrowse,
JULY 1995
the state at form startup). Because the datasource needs to
refresh its view of the new empty record, the OnNewRecord
event is triggered for tblMaster followed by the
OnDataChange event.

Entering a value in the CustNo field in the new empty record and
moving to the next field (by pressing F for example) triggers the
following events:

OnCalcFields for tblMaster
OnDataChange for dsMaster.CustNo

Similar events occur for the Company field:

OnCalcFields for tblMaster
OnDataChange for dsMaster.Company

As a result of moving from a modified field, the value of the cur-
rent record has changed in the underlying table. This causes the
dataset to signal that its calculated field needs recalculating, and
that the datasource’s controls need refreshing with the changed
field values of the record.

When the text in a data-aware control has changed and that con-
trol has lost focus, the text is sent to the underlying TField
object. It then converts the text to the field’s data type, validates
the field value, and applies formatting.

Because the record has changed, the dataset notifies the
associated datasource (dsMaster) that its view of the record
needs to be updated, thus triggering the OnDataChange
event. This ensures the data-aware controls are seeing exact-
ly what’s in the underlying record after the TField has done
its bit. Note that the record itself isn’t actually committed
or posted to the table until TTable.Post is called or the
entire record is refreshed.

Pressing the Post button triggers the following events:

OnUpdateData for dsMaster
BeforePost for tblMaster

OnStateChange to dsBrowse for dsMaster
Table state change to dsBrowse for tblMaster
OnCalcFields for tblMaster
OnDataChange for dsMaster

AfterPost for tblMaster

The OnUpdateData event is triggered by tblMaster’s Post method.
It notifies all controls associated with dsMaster that the record in
the table is about to change, so they can update their field val-
ues. During the post, the states for dsMaster and tblMaster switch
from dsInsert to dsBrowse. The OnCalcFields event is triggered for
the usual reason, and the OnDataChange event is triggered
because the record has been refreshed after being successfully
posted (i.e. written to the table).

Suppose we’d pressed the Cancel button rather than the Post
button:

BeforeCancel for tblMaster
Delphi INFORMANT ▲ 8

On The Cover
OnStateChange to dsBrowse for dsMaster
Table state change to dsBrowse for tblMaster
OnCalcFields for tblMaster
OnDataChange for dsMaster

AfterCancel for tblMaster

The chain of events triggered in this case is much the same, except
the record is canceled and no changes are written to the table.

Pressing the Edit button generates the following chain of events:

BeforeEdit for tblMaster
OnCalcFields for tblMaster
OnStateChange to dsEdit for dsMaster
Table state change to dsEdit for tblMaster
OnDataChange for dsMaster

AfterEdit for tblMaster

In this case, the datasource’s view of the record is refreshed
before the table is ready for editing. This ensures the latest ver-
sion of the record is being edited.

This is especially important where several applications are access-
ing the same table concurrently. It’s possible that between the
time a certain record is moved and edited, another application
has edited that same record and posted the changes. This means
you’re viewing and editing the old version of the record! Thus
moving from record to record (or getting ready to edit and insert
a record) will always refresh the record.

If the datasource and table states are dsInsert or dsEdit, refreshing
a table will cause a modified record to be posted and an
unchanged record to be canceled. Try it yourself by editing and
changing a master record in tblMaster and pressing the Refresh
button on dsMaster’s navigator control.

However, there’s a lot more going on behind the scenes than
DBTracker is showing us when TTable.Edit is called. In fact, the
single most important action to occur for a dataset before a record
can be edited, doesn’t generate a dataset or datasource event. This
leads us to discuss the implications of using shared tables. (Paradox
programmers will be familiar with these concepts.)
J

Record Locking and Shared Tables
Let’s suppose the record you wish to edit is being edited by
another user. When a record in a Paradox table is being edited, it
is write-locked until the changes are posted (and the record
unlocked) or canceled. This ensures that only one person at a
time can make changes to a record. Therefore, when you start
editing, an attempt is made to place a lock on the current record.
If this fails (because another user has already locked the record)
then the edit fails, an exception is raised, and the table state
reverts to dsBrowse.

Calling TTable.Edit will attempt to lock the current record, as
will TTable.Delete just before it tries to delete the record.
When a record is locked by another user, you can’t place a
lock on it until the record is unlocked. This means you can’t
do anything to change the record. (Note that a Paradox
ULY 1995
record lock is a write-lock, so only you can write to it. There
is no such thing as a record read-lock for Paradox tables.) If
DBTracker tries to edit (or delete) a locked record, the only
event that occurs is BeforeEdit (or BeforeDelete) before an
exception is raised.

Another issue with shared tables is that of accuracy. For exam-
ple, how do you know that the records being viewed in a
DBGrid are current? Furthermore, how do you know that the
record you’re viewing even exists and hasn’t been deleted by
another user?

You don’t — at least not until the moment after TTable.Refresh is
called, a TDBNavigator object’s Refresh button is pressed, or the
set of records being viewed has just been scrolled into view.

At this stage, Paradox users will point out that Paradox can
refresh tables automatically at preset intervals, so this isn’t a
problem with Paradox applications. Fortunately, the same effect
can be achieved with Delphi by calling TTable.Refresh in
response to a TTimer’s OnTimer event. However, remember what
refreshing does to a table whose state is dsEdit or dsInsert. If the
datasource and table states are dsInsert or dsEdit, refreshing a
table will cause a modified record to be posted and an
unchanged record to be canceled. Therefore, only call
TTable.Refresh when the dataset’s state is dsBrowse. (Remember, if
the datasource/table state is dsInsert or dsEdit, refreshing a table
will cause a modified record to be posted and an unchanged
record to be canceled.)
Database Events for 1-M Linked Tables
In this situation both dsMaster and dsDetail are open and linked.
The events triggered when using multiple linked tables are a little
different from the previous single table situation. These events
will be triggered when moving from record to record in tblMaster:

OnCalcFields for tblMaster
OnDataChange for dsDetail
OnDataChange for dsMaster

The datasource dsDetail is told to refresh its view of the set of
records displayed in the grid before dsMaster is told to refresh
its view of the single record. (The events probably occur in that
order to avoid displaying master and detail records that don’t
match, because the detail table is potentially slower to update
— especially where the master-detail link is one-to-many.)

The events that occur when calling the various TTable methods
for a detail table are similar to a single unlinked table. The
important differences between these triggered events can be seen
when calling the Edit, Insert, or Delete methods for tblMaster.

Calling tblMaster.Edit triggers the usual stream of events, as does
calling tblDetail.Edit. However, watch what happens when call-
ing tblMaster.Post when tblDetail.State is dsEdit:

OnUpdateData for dsMaster
OnUpdateData for dsDetail
Delphi INFORMANT ▲ 9

On The Cover
BeforeCancel for tblDetail
OnStateChange to dsBrowse for dsDetail
Table state change to dsBrowse for tblDetail
OnDataChange for dsDetail

AfterCancel for tblDetail
BeforePost for tblMaster

OnStateChange to dsBrowse for dsMaster
Table state change to dsBrowse for tblMaster
OnCalcFields for tblMaster
OnDataChange for dsMaster

AfterPost for tblMaster

According to Borland’s documentation, the OnUpdateData event
is triggered by TTable.Post or TTable.UpdateRecord. So why is
OnUpdateData called for dsDetail when tblDetail’s current
unmodified record is being canceled?

In fact, tblDetail’s record was modified when tblMaster entered
edit mode. Remember the field in tblDetail’s current record
that’s used for the link with tblMaster will have been modified
by tblMaster. So the record is being updated by a call to
TTable.UpdateRecord that simply updates tblDetail’s record
without posting it. The detail record is then canceled because,
in effect, the record is unmodified (as there was no
OnDataChange event triggered for any single field in dsDetail).

If tblMaster.Cancel is called instead of tblMaster.Post when
tblDetail.State is set to dsEdit, the same sequence of events
occurs except that OnUpdateData isn’t called for dsMaster,
only for dsDetail.

Another interesting sequence of events occurs when
tblMaster.Edit is called when tblDetail.State is dsEdit:

OnUpdateData for dsDetail
BeforeCancel for tblDetail

OnStateChange to dsBrowse for dsDetail
Table state change to dsBrowse for tblDetail
OnDataChange for dsDetail

AfterCancel for tblDetail
BeforeEdit for tblMaster

OnCalcFields for tblMaster
OnStateChange to dsEdit for dsMaster
Table state change to dsEdit for tblMaster
OnDataChange for dsMaster

AfterEdit for tblMaster

Placing tblMaster into edit mode actually cancels tblDetail’s
unmodified record! What if tblDetail’s record had been modified
and unposted? Then tblMaster would post the changes to
tblDetail’s record before entering edit mode.

While it’s all very well to discuss data control events, there’s no
substitute for using DBTracker yourself with various database
scenarios to learn what happens when a certain button is pressed
or method is called.
The Source Code
DBTracker was written with easy extensibility in mind (see
Listing One beginning on page 12). Although just two tables are
included in the form, more tables could be included and linked
without any need for source code modifications. By simply copy-
JULY 1995
ing and pasting TDataSource and TTable components, adding a
few DBEdit components or a DBGrid component will provide all
the functionality for tracking TTable and TDataSource events. Of
course you’ll need to set the relevant properties for your new
components to make them work together.
Event Handlers
Tracking TDataSource and TTable events is pretty straightfor-
ward — just add the appropriate event handlers for all
TDataSource and TTable objects. This doesn’t have to be done
for all DataSource and Table objects, just one of each. We can
then copy and paste each object as needed at design time —
each copy will use the same event handlers.

The event handlers log event information to the list box using
the custom LogEvent method. Each event handler can identify
the dataset or datasource that triggered the event by typecasting
the Sender parameter to the appropriate type and then accessing
the Name and/or DataSet properties.

The OnStateChange event handler, TrackStateChange, logs the
new state and name of the datasource and checks to see if there
is a DataSet property defined for Sender (the only parameter for
a TNotifyEvent). If not, a warning message is logged. Otherwise
the dataset’s new state is logged. The datasource and dataset
states will usually be the same.

We can identify Sender as a TDataSource by typecasting it as a
TDataSource (using the as operator) and assigning it to
MySender. We can do that because TDataSource is really a point-
er to a dynamically allocated DataSource component.

With Delphi there isn’t a “static” instance of a component or
object because all components are created dynamically at run-
time, and hence are referenced using pointers. So in effect, type-
casting objects means “treat this pointer as a pointer to the type
being cast as”.

Whenever you reference an object’s property or method, the
pointer is automatically de-referenced so it doesn’t seem as if
you’re dealing with a pointer. The following statement from
TrackStateChange is pure pointer assignment — MySender
points to the same dynamic object instance that Sender points
to. Because TObject is the class all VCL objects are descended
from, we can typecast it to the TDataSource descendant class
that we know is the event sender:

MySender := Sender as TDataSource;

The following statement references the pointer so that the
object’s Name property can be accessed:

NameString := MySender.Name;

The ToggleButtons method called in TrackStateChange simply dis-
ables the relevant Methods buttons according to the state of the
datasource.
Delphi INFORMANT ▲ 10

On The Cover
The OnDataChange event is triggered for a number of reasons
that were discussed earlier. This TDataChange event is handled
by the TrackDataChange method. A TDataChange event has an
additional parameter, called Field, that can be used to determine
why OnDataChange was triggered. If Field is a nil pointer, then
the event occurred as a result of moving from record to record in
browse mode because more than one field contributed to the
record changing. If Field is not nil and the table state is dsEdit or
dsInsert, then the event occurred because a field’s value changed
and the unposted record was updated.

The TTable event handlers are very straightforward — they sim-
ply log each event with the sender’s name. Most of the TTable
events are triggered before and after a particular TTable action.
When a record is posted, a BeforePost and AfterPost event is trig-
gered. When a “before” event is logged all events subsequently
logged are indented by one level. When an “after” event is
logged the indenting is reduced by one level. This indentation
displays which events occur between, before, and after events.

The cboTables TComboBox object lists the datasources that can be
chosen for the Methods buttons to act on. The items in the
TStrings object property of the ComboBox contain both the names
of each datasource and a pointer to the named datasource instance.

A TStrings list is able to store both a string and pointer instead of
just a string. Adding a string to a TStrings list is done using the
Add or Insert methods. To add both the string and pointer to the
list, use either the AddObject or InsertObject method (see the
FormCreate method in Listing One). Strings and pointers to
objects in the list can be accessed using the Items and Objects array
properties respectively.

The TStrings object can be very useful for creating “bag” type
arrays (containers) used to store items of different types. If you’re
familiar with Paradox’s DynArray type, the same storage func-
tionality can be achieved in Delphi by using a TStrings object.

As previously mentioned, DBTracker can easily be changed at
design-time to include more TTables and TDataSource compo-
nents (whose properties can be set interactively) and then data -
aware controls set up to work with them. All events will still be
tracked without you having to modify any source code. The only
caveat is that you must have a TDataSource called dsMaster and a
TTable called tblMaster in the form. You may need to define a
few field objects for those tables that are linked. You’ll also need
to define a calculated field called MyCalcField for tblMaster.
Extending DBTracker
I mentioned earlier that DBTracker was written with easy exten-
sibility in mind. So how is this achieved? Let’s start with the
FormCreate method.

FormCreate checks the type of each component listed in the
Components array property of the form to find all TDataSource
components in the form at run-time. Each one found is added
to the TStrings list of the cboTables TComboBox drop-down list
JULY 1995
labeled Call Method for. As mentioned, the TStrings list con-
tains a list of names of TDataSource components in the form
with a pointer to each TDataSource instance. This drop-down
list allows the user to select the table to be affected when press-
ing one of the Call Method buttons.

The TDataSource and TTable variables CurrentSource and
CurrentTable are used to track the DataSource and Table pair
to be acted on by the Methods buttons. When the form is creat-
ed CurrentSource is set to default to the first datasource found
in the form. CurrentSource’s DataSet property is used to ini-
tialize CurrentTable. If there isn’t a DataSet property defined
for CurrentSource, then CurrentTable cannot be set and the
program will halt.

Assuming that CurrentTable is defined, all tables associated
with the datasources are then opened. All TTables must be not
be open (i.e. their Active properties must be set to False) at
design time. If a TDataSource has no DataSet property, a warn-
ing message is displayed stating the TDataSource has no DataSet
and no associated table can be opened.

The two TDBEdit components are then set to have their DataField
properties set to point to the first two fields in tblMaster. (Note that
tblMaster doesn’t necessarily have to be the master table in a multi-
table form. I’ve used this as a convention to identify the table used
by the two TDBEdit components for their data fields.) Finally, the
form’s buttons have their Enabled properties set.

The TComboBox OnChange event is handled by the custom
cboTablesChange procedure. Here the CurrentSource and
CurrentTable are set to that of the chosen datasource, and its
DataSet property (if this is undefined then a warning error mes-
sage is displayed). The Methods buttons have their Enabled
properties set by the call to the custom ToggleButtons procedure.

Notice how the object pointer assignments were typecast using
value typecasting, instead of the type-safe casting using the as
operator. The difference between these ways of typecasting is this:
if the typecast fails, then using as will raise an exception whereas
the value typecast may cause undefined behavior later on (possi-
bly causing a crash when the pointer is dereferenced). However,
in this case we know that this particular typecast is safe.

The SaveEventList method that handles the OnClick event for
the Save List button writes each item in the TStrings list to an
ASCII file whose name is chosen using a SaveDialog component.
Conclusion
I have DBTracker set up as a form template in the gallery for
those times when I need to create a quick form that can track the
flow of database events in a complex multi-linked tables setup. I
can quickly add those tables and datasources required by copying
and pasting from the existing TTables and TDataSources. Then all
that’s required is to set up the links between tables (and set their
properties), place TDBGrid or TDBEdit components on the form
(and set their properties), and run the form.
Delphi INFORMANT ▲ 11

On The Cover

Label3: TLabel;
Label4: TLabel;

procedure btnInsertClick(Sender: TObject);
procedure btnDeleteClick(Sender: TObject);
procedure btnEditClick(Sender: TObject);
procedure btnPostClick(Sender: TObject);
procedure btnCancelClick(Sender: TObject);
procedure btnClearClick(Sender: TObject);
procedure TrackDataChange(Sender: TObject;

Field: TField);
procedure TrackStateChange(Sender: TObject);
DBTracker was developed as a result of my need for a way of
debugging code in a Data Access component’s event handler. It
also serves as a tool for learning and understanding how and
when database events are triggered.

If desired, you could dig deeper into the data controls event model
by logging the TField events, but I’ll leave that exercise to you. ∆

The DBTracker utility is available on the 1995 Delphi Informant
Works CD located in INFORM\95\JUL\JO9507.
JULY 1995 Delphi INFORMANT ▲ 12

Begin Listing One: FormCreate method

unit Track;

interface

uses
SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls, Forms, Dialogs, ExtCtrls, DBCtrls,
StdCtrls, Mask, Buttons, Grids, DBGrids, DB, DBTables;

const
DbStates :

array[dsInactive..dsCalcFields] of string[12] =
('dsInactive', 'dsBrowse', 'dsEdit',
'dsInsert', 'dsSetKey', 'dsCalcFields');

type
TFrmDBTrack = class(TForm)

dsMaster: TDataSource;
tblMaster: TTable;
dsDetail: TDataSource;
DBGrid1: TDBGrid;
DBEdit1: TDBEdit;
DBEdit2: TDBEdit;
DBNavigator2: TDBNavigator;
lstEvent: TListBox;
btnClear: TBitBtn;
tblDetail: TTable;
DBEdit4: TDBEdit;
Label1: TLabel;
DBNavigator1: TDBNavigator;
edCount: TEdit;
cboTables: TComboBox;
Label2: TLabel;
GroupBox1: TGroupBox;
btnInsert: TBitBtn;
btnDelete: TBitBtn;
btnEdit: TBitBtn;
btnPost: TBitBtn;
btnCancel: TBitBtn;
btnOpen: TBitBtn;
btnClose: TBitBtn;
dlgSaveAs: TSaveDialog;
btnSaveList: TBitBtn;
tblMasterCustNo: TFloatField;
tblMasterCompany: TStringField;
tblMasterMyCalcField: TIntegerField;

John O’Connell is a software consultant (and born-again Pascal programmer), based in
London, specializing in the design and development of Windows database applica-
tions. Besides using Delphi for software development, he also writes applications using
Paradox for Windows and C. John has worked with Borland UK technical support on a
regular freelance basis and can be reached at (UK) 01-81-680-6883, or on
CompuServe at 73064,74.

procedure TrackUpdateData(Sender: TObject);
procedure FormCreate(Sender: TObject);
procedure TrackAfterCancel(DataSet: TDataset);
procedure TrackAfterClose(DataSet: TDataset);
procedure TrackAfterDelete(DataSet: TDataset);
procedure TrackAfterEdit(DataSet: TDataset);
procedure TrackAfterInsert(DataSet: TDataset);
procedure TrackAfterOpen(DataSet: TDataset);
procedure TrackAfterPost(DataSet: TDataset);
procedure TrackBeforeCancel(DataSet: TDataset);
procedure TrackBeforeClose(DataSet: TDataset);
procedure TrackBeforeDelete(DataSet: TDataset);
procedure TrackBeforeEdit(DataSet: TDataset);
procedure TrackBeforeInsert(DataSet: TDataset);
procedure TrackBeforeOpen(DataSet: TDataset);
procedure TrackBeforePost(DataSet: TDataset);
procedure TrackOnCalc(DataSet: TDataset);
procedure TrackNewRec(DataSet: TDataset);
procedure btnOpenClick(Sender: TObject);
procedure btnCloseClick(Sender: TObject);
procedure cboTablesChange(Sender: TObject);
procedure FormCloseQuery(Sender: TObject;

var CanClose: Boolean);
procedure SaveEventList(Sender: TObject);

private
ListLen: Word;
IndentLevel: Byte;
CurrentTable: TTable;
CurrentSource: TDataSource;
procedure LogEvent(EventStr: string);
procedure ToggleButtons(StateParam: TDataSetState);

public
end;

var
FrmDBTrack: TFrmDBTrack;

implementation

{$R *.DFM}

procedure TFrmDBTrack.ToggleButtons(StateParam:
TDataSetState);

var
ButtonEnabled: Boolean;

begin
{ If the table is in edit or insert mode then disable

the Insert Delete and Edit buttons else disable the
Post and Cancel buttons. If the table is closed/
inactive then disable all pushbuttons. }

ButtonEnabled :=
not(StateParam in [dsEdit, dsInsert, dsInactive]);

btnInsert.Enabled := ButtonEnabled;
btnDelete.Enabled := ButtonEnabled;
btnEdit.Enabled := ButtonEnabled;

if StateParam = dsInactive then
begin

btnPost.Enabled := False;
btnCancel.Enabled := False;

end

JULY 1995 Delphi INFORMANT ▲ 13

else
begin

btnPost.Enabled := not ButtonEnabled;
btnCancel.Enabled := not ButtonEnabled;

end;
ButtonEnabled := (CurrentTable <> nil);
btnOpen.Enabled := ButtonEnabled;
btnClose.Enabled := ButtonEnabled;

end;
procedure TFrmDBTrack.LogEvent(EventStr: string);
var

IndentStr : string[32];
i : byte;

begin
with lstEvent do

begin
IndentStr := '';
if IndentLevel > 0 then

begin
for i := 1 to IndentLevel do

IndentStr := IndentStr + ' ';
Items.Add(IndentStr + EventStr);

end
else

Items.Add(EventStr);
Inc(ListLen);
edCount.Text := IntToStr(ListLen);
ItemIndex := Items.Count - 1;

end;
btnSaveList.Enabled := (ListLen > 0);

end;

procedure TFrmDBTrack.TrackDataChange(Sender: TObject;
Field: TField);

var
ds: TDataSource;

begin
ds := Sender as TDataSource;
if (Field = nil) then

{ Event was triggered by more than one field so
event resulted from moving to another record }

LogEvent('OnDataChange for ' + ds.Name)
else

if ds.State in [dsEdit, dsInsert] then
{ Event was triggered by a single field therefore

this event resulted from a single field value
being changed during editing }

LogEvent('OnDataChange for ' + ds.Name + '.' +
Field.FieldName)

else
{ Event occurred for single field while

not in Edit/Insert }
LogEvent('OnDataChange for ' + ds.Name)

end;

procedure TFrmDBTrack.TrackStateChange(Sender: TObject);
var

MySender: TDataSource;
begin

MySender := Sender as TDataSource;
LogEvent('OnStateChange to '+DbStates[MySender.State]+

' for ' + MySender.Name);
{ Don't try getting name of undefined dataset }
if MySender.DataSet <> nil then

LogEvent('Table state change to ' +
DbStates[TTable(MySender.DataSet).State] +
' for ' + TTable(MySender.DataSet).Name)

else
LogEvent('WARNING -- No dataset defined for ' +

MySender.Name);
ToggleButtons(MySender.State)

end;

procedure TFrmDBTrack.TrackUpdateData(Sender: TObject);

On The Cover

begin
with (Sender as TDataSource) do

LogEvent('OnUpdateData for ' + Name);
end;

procedure TFrmDBTrack.btnInsertClick(Sender: TObject);
begin

LogEvent('Begin TTable.Insert');
Inc(IndentLevel);
CurrentTable.Insert;
Dec(IndentLevel);
LogEvent('End TTable.Insert');

end;

procedure TFrmDBTrack.btnDeleteClick(Sender: TObject);
begin

LogEvent('Begin TTable.Delete');
Inc(IndentLevel);
CurrentTable.Delete;
Dec(IndentLevel);
LogEvent('End TTable.Delete');

end;

procedure TFrmDBTrack.btnEditClick(Sender: TObject);
begin

LogEvent('Begin TTable.Edit');
Inc(IndentLevel);
CurrentTable.Edit;
Dec(IndentLevel);
LogEvent('End TTable.Edit');

end;

procedure TFrmDBTrack.btnPostClick(Sender: TObject);
begin

LogEvent('Begin TTable.Post');
Inc(IndentLevel);
CurrentTable.Post;
Dec(IndentLevel);
LogEvent('End TTable.Post');

end;

procedure TFrmDBTrack.btnCancelClick(Sender: TObject);
begin

LogEvent('Begin TTable.Cancel');
Inc(IndentLevel);
CurrentTable.Cancel;
Dec(IndentLevel);
LogEvent('End TTable.Cancel');

end;

procedure TFrmDBTrack.FormCreate(Sender: TObject);
var

i: word;
begin

{ Find all TDataSource objects on form and add them
the TStrings list associated with the TCombobox }

with cboTables do
begin

for i := 0 to Self.ComponentCount - 1 do
if (Self.Components[i] is TDataSource) then

{ Add object name & pointer to the list }
Items.AddObject(TDataSource(

Self.Components[i]).Name,
TDataSource(Self.Components[i]));

{ Form's main buttons will call TTable methods
for CurrentTable which defaults to dataset
of first TDataSource object found in form's
component list. CurrentSource must have a
dataset defined }

CurrentSource :=TDataSource(Items.Objects[0]);
if CurrentSource.Dataset <> nil then

CurrentTable := TTable(CurrentSource.DataSet)
else begin

MessageDlg('The default datasource ' +

JULY 1995 Delphi INFORMANT ▲ 14

On The Cover

CurrentSource.Name +
#10' has no DataSet property defined.'#10+
#10'This application will terminate',
mtError, [mbOk], 0);

Halt;
end;
IndentLevel := 0;
{ Open all tables in form, but check that each

TDataSource in list has a dataset defined }
for i := 0 to Items.Count - 1 do

if (TDataSource(
Items.Objects[i]).DataSet = nil) then

MessageDlg('The datasource ' +
TDataSource(Items.Objects[i]).Name +
' has no DataSet property defined',
mtWarning, [mbOK], 0)

else
TDataSource(Items.Objects[i]).DataSet.Open;

end;
DBEdit1.DataField := tblMaster.Fields[0].FieldName;
DBEdit2.DataField := tblMaster.Fields[1].FieldName;
ToggleButtons(CurrentSource.State);
btnSaveList.Enabled := (ListLen > 0);

end;

procedure TFrmDBTrack.btnClearClick(Sender: TObject);
begin

lstEvent.Clear;
ListLen := 0;
IndentLevel := 0;
edCount.Text := IntToStr(ListLen);
btnSaveList.Enabled := (ListLen > 0);

end;

procedure TFrmDBTrack.TrackAfterCancel(
DataSet: TDataset);

begin
Dec(IndentLevel);
with (DataSet as TTable) do

LogEvent('AfterCancel for ' + Name);
end;

procedure TFrmDBTrack.TrackAfterClose(
DataSet: TDataset);

begin
Dec(IndentLevel);
with (DataSet as TTable) do

LogEvent('AfterClose for ' + Name);
end;

procedure TFrmDBTrack.TrackAfterDelete(
DataSet: TDataset);

begin
Dec(IndentLevel);
with (DataSet as TTable) do

LogEvent('AfterDelete for ' + Name);
end;

procedure TFrmDBTrack.TrackAfterEdit(DataSet: TDataset);
begin

Dec(IndentLevel);
with (DataSet as TTable) do

LogEvent('AfterEdit for ' + Name);
end;

procedure TFrmDBTrack.TrackAfterInsert(
DataSet: TDataset);

begin
Dec(IndentLevel);
with (DataSet as TTable) do

LogEvent('AfterInsert for ' + Name);
end;

procedure TFrmDBTrack.TrackAfterOpen(DataSet: TDataset);

begin
Dec(IndentLevel);
with (DataSet as TTable) do

LogEvent('AfterOpen for ' + Name);
end;

procedure TFrmDBTrack.TrackAfterPost(DataSet: TDataset);
begin

Dec(IndentLevel);
with (DataSet as TTable) do

LogEvent('AfterPost for ' + Name);
end;

procedure TFrmDBTrack.TrackBeforeCancel(
DataSet: TDataset);

begin
with (DataSet as TTable) do

LogEvent('BeforeCancel for ' + Name);
Inc(IndentLevel);

end;

procedure TFrmDBTrack.TrackBeforeClose(
DataSet: TDataset);

begin
with (DataSet as TTable) do

LogEvent('BeforeClose for ' + Name);
Inc(IndentLevel);

end;

procedure TFrmDBTrack.TrackBeforeDelete(
DataSet: TDataset);

begin
with (DataSet as TTable) do

LogEvent('BeforeDelete for ' + Name);
Inc(IndentLevel);

end;

procedure TFrmDBTrack.TrackBeforeEdit(DataSet: TDataset);
begin

with (DataSet as TTable) do
LogEvent('BeforeEdit for ' + Name);

Inc(IndentLevel);
end;

procedure TFrmDBTrack.TrackBeforeInsert(
DataSet: TDataset);

begin
with (DataSet as TTable) do

LogEvent('BeforeInsert for ' + Name);
Inc(IndentLevel);

end;

procedure TFrmDBTrack.TrackBeforeOpen(DataSet: TDataset);
begin

with (DataSet as TTable) do
LogEvent('BeforeOpen for ' + Name);

Inc(IndentLevel);
end;

procedure TFrmDBTrack.TrackBeforePost(DataSet: TDataset);
begin

with (DataSet as TTable) do
LogEvent('BeforePost for ' + Name);

Inc(IndentLevel);
end;

procedure TFrmDBTrack.TrackOnCalc(DataSet: TDataset);
begin

with (DataSet as TTable) do
LogEvent('OnCalcFields for ' + Name);

end;

procedure TFrmDBTrack.TrackNewRec(DataSet: TDataset);
begin

JULY 1995 Delphi INFORMANT ▲ 15

with (DataSet as TTable) do
LogEvent('OnNewRecord for ' + Name);

end;

procedure TFrmDBTrack.btnOpenClick(Sender: TObject);
begin

LogEvent('Begin TTable.Open');
Inc(IndentLevel);
CurrentTable.Open;
Dec(IndentLevel);
LogEvent('End TTable.Open');

end;

procedure TFrmDBTrack.btnCloseClick(Sender: TObject);
begin

LogEvent('Begin TTable.Close');
Inc(IndentLevel);
CurrentTable.Close;
Dec(IndentLevel);
LogEvent('End TTable.Close');

end;

procedure TFrmDBTrack.cboTablesChange(Sender: TObject);
begin

{ Set CurrentSource and CurrentTable if user changes
datasource to be acted on by Call Method buttons }

with cboTables do
CurrentSource :=

TDataSource(Items.Objects[Items.IndexOf(Text)]);
CurrentTable := TTable(CurrentSource.DataSet);

if CurrentTable = nil then
MessageDlg('The datasource ' + CurrentSource.Name +

'has no DataSet property defined',
mtWarning, [mbOK], 0);

ToggleButtons(CurrentSource.State);
end;

procedure TFrmDBTrack.FormCloseQuery(Sender: TObject;
var CanClose: Boolean);

begin
if MessageDlg('Are you sure you wish to exit?',

mtConfirmation,[mbYes,mbNo],0) <> mrYes
then CanClose := False;

end;

procedure TFrmDBTrack.SaveEventList(Sender: TObject);
var

LogFileName: string;
LogFile: TextFile;
i, j : Word;

begin
{ Write items in lstEvent to specified ASCII file }
if dlgSaveAs.Execute then

begin
LogFileName := dlgSaveAs.Filename;
AssignFile(LogFile, LogFileName);
Rewrite(LogFile);
j := lstEvent.Items.Count - 1;

for i := 0 to j do
writeln(LogFile, lstEvent.Items[i]);

CloseFile(LogFile);
MessageDlg('Events list written to ' + LogFileName,

mtInformation, [mbOK], 0);
end;

end;

end.

End Listing One

On The Cover

JULY 1995

On the Cover
Delphi / Object Pascal / IDAPI

By Marco Cantù

Moving to Local Interbase
The First Step Towards Upsizing a
Delphi Application to Client/Server
U psizing is the process of taking an application that works on a PC and
making it more robust by moving it to client/server. This is the opposite
of downsizing, or taking a mainframe or mini-computer application

and moving it to the client/server model.

As we’ve heard, Delphi can be used to build client/server applications. Further, developing a
new Delphi database application using a SQL server is similar to developing an application
based on local files.

Having said this, however, what’s involved in upsizing an application? To make it function,
very little. And just a little more work is required to take advantage of SQL server features
such as transaction processing.
Having What It Takes
In this article, we’ll discuss what’s involved in upsizing an existing Delphi database application
(based on a local Paradox table), to a client/server application (based on a Local InterBase
database). This can be seen as a first step in upsizing the application to use a remote SQL
server. The next step — moving from a local SQL database to a remote SQL server — is gen-
erally quite simple, particularly if you use two versions of the same database.

To begin, I’ve built a simple database application that accesses a Paradox table (the sample
Country.DB table that ships with Delphi), with a calculated field. The final version of the
example will be similar, but connected to the Local InterBase server.
In this article, we’ll:
• Write an initial example program using a Paradox table.
• Write a program to copy the data from a Paradox table file

to a Local InterBase database.
• Update the first example program to use it with the Local

InterBase table.
Generating Code with the Database Form Expert
The first draft of the program can be built using the Database Form
Expert. To do this, create a project and start the Expert by selecting
Help | Database Form Expert. In the Expert, select the following:
Delphi INFORMANT ▲ 16

Figure 1: The expert-generated program, at run-time.

On The Cover

Figure 2: The Fields editor and Add Fields dialog box.
• a simple form based on a TTable object,
• the Country table (country.db) in the \delphi\demos\data

directory,
• all the fields,
• and a grid for the output.

After generating the code, you can remove the previous blank
form from the project (Form1 by default), compile the pro-
gram, give appropriate names to the files, and run it. The
result (with some modifications) is shown in Figure 1.

Delphi’s DBNavigator component is already transaction-ori-
ented, so you can easily use it for transaction processing. In
this example, the DBNavigator component’s VisibleButtons
property has been set so that nbInsert, nbDelete, nbEdit,
nbPost, nbCancel, and nbRefresh are False. In addition, the
Caption property of Form1 was changed to Expert Grid.
The Fields of a Table
The grid of our example Expert Grid form includes all the
fields in the source table. Of course, we could have removed
some fields using the Database Form Expert, but how do we
remove them once the code has been generated? And what
about adding new fields?

The answer to these questions lies in the concept of the field.
Field components (instances of the TField class) are non-visu-
al components that are fundamental to each Delphi database
application. Data-aware components are directly connected to
these field objects, which correspond to database fields.

By default, TField components are automatically created by
Delphi at run-time. This happens each time a DataSet compo-
nent is active. These fields are stored in the Fields property of
table and query components as an array of fields. We can access
these values in a program with a statement like the following:

Table1.Fields[0].AsString

Alternatively, Field components can be created at design-time,
using the Fields editor. In this case, you can set a number of
properties for these fields. These properties affect the behavior
JULY 1995
of their data-aware components. When you define new fields
at design-time, they are listed in the Object Inspector.
Creating a Calculated Field
To open the Fields editor, select the Table (or Query) compo-
nent on the form, right-click to activate its SpeedMenu, and
select Fields editor. Use the Add button to select which fields
of the database table should be used by the Table or Query
component (see Figure 2). [For an in-depth discussion of
TField objects and the Fields editor, see Cary Jensen’s article
“The TField Object” in the June 1995 Delphi Informant.]
Click the Define button in the Fields editor to display the
Define Field dialog box (see Figure 3). In this dialog box, you
can define new calculated fields, and enter a descriptive field
name that can include blank spaces. The dialog box generates
an internal name — the name of the component — that you
can modify.

Next, select a data type for the field, and check the
Calculated box. For our calculated field, we’ll use population
and country area data from the Country table to compute the
population density of each country.

To do this, we’ll need to add another field to the table by
clicking the Add button in the Fields editor. Then click on
the Define button and enter a proper Field name,
Population Density in this example, and Field type —
FloatField — for the new calculated field. Note that as
you type in the field name, the component name is gener-
ated by default.

Of course, we also need to provide a way to compute the
new field. This is accomplished in the OnCalcFields event of
the Table component with the following Object Pascal code:

procedure TForm1.Table1CalcFields(DataSet: TDataset);
begin

Table1PopulationDensity.Value :=
Table1Population.Value / Table1Area.Value;

end;

As you can see, this code accesses the other fields directly (e.g.
Table1Area.Value). This is possible because the Fields edi-
tor has added the fields to the form. Here is the Object Pascal
Delphi INFORMANT ▲ 17

On The Cover

Figure 3: Defining a calcu-
lated field in the Define Field
dialog box.

Figure 4 (Top): The grid at design time, after some changes to the
properties of the field components. Figure 5 (Bottom): The output of
the example, with the calculated Population Density field.
code the Fields editor added to the form definition:
Table1PopulationDensity: TFloatField;
Table1Area: TFloatField;
Table1Population: TFloatField;
Table1Name: TStringField;
Table1Capital: TStringField;

Also note that each time you add or remove fields in the
Fields editor, the form’s grid is automatically updated. Of
course, you won’t see the values of a calculated field because
the method used to compute it must be compiled, and will be
available only at run-time.

After defining components for the fields, we can use their
properties to customize some of the grid's visual compo-
nents. For example, as shown in Figure 4, we've changed the
first column's name to Country (instead of Name). To do
this, simply select Table1Name in the Object selector and
change its DisplayLabel property to Name. Last, press J to
accept the changes.

We also set a display format, adding a comma to separate
thousands. For example, you can select Table1Area in the
Object selector and enter #,# for its DisplayFormat property
(likewise, select Table1Population and change its
DisplayFormat property).

These changes have an immediate effect on the grid at design
time. Also, the form's Caption property has been changed
from Expert Grid to Calculated Field.

We can now compile and run the program. At run-time the
grid will have proper values for the calculated field,
Population Density (see Figure 5).
Copying a Table to the Server
Now that we have built the basic program, we can start the
upsizing process by copying the table to a Local InterBase
database.

There are basically two ways to copy a Paradox table to a
SQL server. The first is to use an interactive tool, such as the
Database Desktop. The other is to write a program in
Delphi, based on the BatchMove component (located on the
Data Access page of the Component Palette). We’ll use the
JULY 1995
second approach to introduce the BatchMove component.
Create a new project and place two Table components, a
BatchMove component, and a Button component on the blank
form. Change the Caption property of Button1 to Move, and
the form’s Caption property to Move Countries (see Figure 6).

Connect the first table to the original Paradox table
(Country.DB). We can immediately open it by setting its Active
property to True. The second table should relate to the target
database, indicating the name of the new table. (We cannot
select Country as the target name, because there is already a
table with this name in the IBLOCAL database.) Instead, we’ll
use America, since there are only American countries in the
table. Once each table is properly set up, use them for the
Source and Destination properties of the BatchMove component.

Last, set a proper value for the BatchMove component’s Mode
property. The default value is batAppend which appends
records to an existing destination table. You can also set the
following values:
• batUpdate updates matching records in an existing table
Delphi INFORMANT ▲ 18

On The Cover

Figure 6: The example
form, Move Countries
(shown here at design time),
is used to copy the tables.
• batAppendUpdate updates
matching records of, and
appends new records to, an
existing table

• batCopy creates a destination
table with structure and con-
tent of source table

• batDelete deletes matching
records in existing table

The batCopy parameter is what
we’re looking for so select it.
Next, right-click on the form to activate its SpeedMenu,
and select the Execute command. Delphi will create the
new table (after asking for log-in information to the Local
InterBase server).

We’ve done it! And without compiling the program! As an
alternative, we can write one line of code for the Move but-
ton’s OnClick event handler:

BatchMove1.Execute;

Now we’re ready for the second step of the upsizing process.
Porting the Application
Now that the table has been moved to the Local InterBase
server, we can turn our attention to modifying the application.

Open the old application (or a copy), select the Table com-
ponent, and set its Active property to False. Then select the
IBLOCAL database and the America table (that should
appear in the list of available tables in the Object Inspector).

Activate the table again, and the live data is displayed. The
difference is that now we are accessing a SQL server. When
you run the program, the new calculated field will appear,
exactly as it did in the previous version.
Figure 7: The Visual Query Builder.
Using the Visual Query Builder
To build a more advanced version of our example, you can
use a Query component instead of a Table component.
Simply remove the Table component and add a Query com-
ponent. Connect the data source to the Query component
and write the appropriate SQL statement.

Since we are exploring the development of client/server
applications, we’ll use Delphi’s Visual Query Builder to
create the SQL statement. (Note that the Visual Query
Builder is available only with the Client/Server version of
Delphi.) To access the Visual Query Builder, right-click on
the Query component to display its SpeedMenu. Then
select Query Builder to display the Databases dialog box.
Select the IBLOCAL database and enter the password.
When the Add Table dialog box appears, select the
America table. Then close the dialog box.
JULY 1995
There are two ways to add columns to the answer set in
the lower portion of the Visual Query Builder (see Figure
7). You can drag a column from the table window (AMERI-
CA:AMERICA in our example) to the bottom half of the
screen, or simply double-click on each column in the
table window.

Next, we’ll define a calculated field directly in the query.
Click on the Expression button in the Visual Query Builder’s
toolbar (it has an “a + b” icon). In the Expression dialog box
(see Figure 8), enter the Expression Name (DENSITY in this
example), click on the POPULATION column, the division
operator (/), and then on the AREA column. The expression
will appear in the Expression box.

If it’s correct, click on the Close button to return to the
Visual Query Builder. A new column will be added to the
table resulting from the query. Now you can click the Run
button (a lightning bolt) to see the result. The calculated field
will appear as if it were an original field of the table.

You can also look at the code of the SQL query by clicking
on the SQL (eyeglasses) button:

SELECT AMERICA.NAME, AMERICA.CAPITAL,
AMERICA.AREA, AMERICA.POPULATION,
(AMERICA.POPULATION/AMERICA.AREA) as Density

FROM AMERICA AMERICA

Click on the OK (green check mark) button to copy the text of
the query back to the Query component in the form. Now acti-
vate it, and you’ll see the fields of the form in the grid, includ-
ing the calculated Density field, at design-time. (If you do not
own the Delphi Client/Server edition, simply write the SQL
statement above in the SQL property of the Query component.)

There is still a minor problem, however. The division calcu-
lation we wrote in the SQL expression results in a floating-
point number with several decimal places. The problem is
that the default grid is not wide enough to accommodate all
Delphi INFORMANT ▲ 19

On The Cover

Figure 8 (Top): The Expression dialog box of the Visual Query Builder
can be used to define calculated fields. Figure 9 (Bottom): The form
with the SQL-calculated Density field at design time.
the numbers, so the values don’t appear correctly. To solve
the problem, we simply need to resize the grid’s columns.

However, this is possible only if you define Field components
for the query, using the Fields editor. Again, right-click on the
form to access the Fields editor and add all the fields. Now,
you can resize the grid’s columns to obtain the desired effect
(see Figure 9).
Marco Cantù is a freelance writer and consultant based in Italy. Besides writing
books and articles, he enjoys training Delphi and C++ programmers and
speaking at conferences. You can reach Marco on CompuServe at 100273,2610.
From Porting to Upsizing
In the last example, we obtained two interesting advantages.
The first and most evident advantage is that now we can dis-
play a calculated field at run-time. This is possible because we
JULY 1995
do not need compiled Object Pascal code to make this com-
putation. Instead, the Local InterBase server does it while
processing a SQL statement.

This is a key point. We have moved a processing task from
the client application to the SQL server. This means that we
can move computations from the client computer to the serv-
er computer, which can usually handle the large amount of
data involved in big queries more quickly and efficiently.

Although, admittedly, we are currently running both the
client and server code on the same computer (since we’re
using Local InterBase), this doesn’t modify the general per-
spective. A “true” client/server application distributes the pro-
cessing workload of an application between a client and server
computer. The client should be primarily involved in the user
interface, and the server in data processing.
Conclusion
To obtain all the benefits of “true” client/server program-
ming, we would need to go one step further and employ a
SQL server that resides on another computer. The easiest
migration would be to an InterBase database on another
platform (e.g. Microsoft Windows NT, Novell NetWare,
SCO UNIX, etc.).

Still, just by moving the data to Local InterBase, we receive
many advantages over a Paradox database. Greatly enhanced
data integrity via triggers, stored procedures, and transaction
processing is just one example. ∆

This article was adapted from material for Marco Cantù’s
book, Mastering Delphi, published by Sybex.

The demonstration projects referenced in this article are available
on the 1995 Delphi Informant Works CD located in
INFORM\95\JUL\MC9507.
Delphi INFORMANT ▲ 20

JULY 1995

The TField Class:
Part II
Using Calculated Fields

DBNavigator
Delphi / Object Pascal

By Cary Jensen Ph.D.
T Field components are a class of objects that permit you to directly manip-
ulate the data displayed on a form. These objects are created automati-
cally at run-time or manually at design time. By creating TFields at design

time you can exert greater control over the default characteristics of the corre-
sponding fields. For example, you can display only some of the fields from a
table in a DBGrid component.

Last month’s article examined how to use the Fields editor dialog box to instantiate fields associated
with a Table object, and how to control their properties both at design time and run-time. This month
we will explore TFields further. However, instead of instantiating TFields that belong to a Table, we
will learn how to create calculated fields. [For a discussion of calculated fields in a client/server configu-
ration, see Marco Cantù’s article “Moving to Local InterBase” beginning on page 16.]
Reckoning with Data
Calculated fields differ from other TFields in one very important way—they are not associated with
data in your table. Furthermore, the value displayed in a calculated field is always defined using Object
Pascal code. In other words, as a developer you are responsible for assigning values to calculated fields.

At first thought this seems very inconvenient. Since most data control components (e.g. DBGrid,
DBText, or DBEdit components) automatically display data from their associated DataSource, you
may wonder why anyone would want to use a field requiring you to add code to display data.

However, when you use calculated fields to display data that is not stored in a DataSource the answer
becomes more apparent. There are two instances where this is particularly valuable: displaying calcu-
lations and lookup data. Let’s consider calculations first.
Displaying Calculated Values
Imagine you have a table of individual items being purchased by a customer for a particular
order (a “line items” table). At a minimum this table holds the item Identification (ID) for
each item being purchased, along with the corresponding price and quantity.

In most applications such a table doesn’t include a total field to hold the product of price and
quantity. Since the total can always be calculated from the data by multiplying the item price times
the quantity ordered, a total field is redundant.
Delphi INFORMANT ▲ 21

DBNavigator

Figure 1: As shown here, the total of price and quantity, as well as the
custom company name and employee last name fields, are displayed
using calculated fields.
Although storing a total value in the table isn’t necessary, it’s
often desirable to display this value on a form. It is for this pur-
pose that a calculated field is intended. Using Object Pascal code
you can calculate the product of price and quantity, and assign
this value to the calculated field. An example of a DBGrid that
displays the product of the Price and Quantity fields in a calcu-
lated field (named Total) is shown in Figure 1.

The amount in the Total field is easily calculated. Simply attach
the code that performs the assignment for calculated fields to
the OnCalcFields event associated with the TTable component
for which you have defined the calculated field. For example,
suppose you have a Table component named Table1 attached
to the table named Items.DB and have created a calculated field
named Amount. To assign a value to Amount, place the appro-
priate code in the OnCalcFields event associated with Table1.
Displaying Lookup Data
The second purpose of calculated fields is to display lookup data.
Lookup data is information about one record that is stored in
another table. For example, the table of items being sold to a
customer must contain a part number (or some other value that
identifies what the customer is purchasing). However, such a
table rarely contains a description of the product. This descrip-
tion is normally located in another table — a parts table that
holds one record for each part.

To display a part description from a parts table, without having to
also enter and store this information in a line items table, create a
calculated field that displays the description. Then, update the value
of this field from the OnCalcFields event. Each time an OnCalcFields
event triggers, you can locate the corresponding part record in the
parts table and assign its description to the calculated field.
Figure 2: The OnCalcFields event demonstration form.
The OnCalcFields Event
The OnCalcFields event is triggered each time Delphi needs to
update the data displayed in this field. This happens frequently.
For example, if you edit a value displayed in a DBEdit compo-
nent attached to a DataSource component, the OnChange event
for that field will trigger an OnCalcFields event.
JULY 1995
OnCalcFields events occur even when no change has been made
to data. Each time it’s necessary for a Table object to update the
display of a record, an OnCalcFields event occurs. For example,
OnCalcFields events occur for each displayed record when a form
first opens, as well as when you advance to a new record.

If the DataSet (TTable, TQuery, or TStoredProc) is responsible
for more than one record being displayed, the OnCalcFields
event occurs once for each record. For example, if a DBGrid is
associated with a detail table in a one-to-many form, there will
be one OnCalcFields event generated for each record being dis-
played in the DBGrid when the form first initializes, as well as
when the user advances to a new master record.
Adding Code to OnCalcFields
The OnCalcFields event doesn’t occur unless you have instantiat-
ed at least one calculated field for the associated DataSet compo-
nent. To do this use the Fields editor dialog box. Use the follow-
ing steps to create a form on which you’ll place a table that
includes a calculated field.

Begin by creating a new project. Place the following components
on the form: a DataSource, Table, DBNavigator, and DBEdit.
Finally, place a Label component to the left of the DBEdit object
(see Figure 2).

Display the Object Inspector and change the properties of your
objects as follows: Set the Caption property of the Label to Order
Number:. Set the DataSource’s DataSet property to Table1. Set
the DBNavigator’s DataSource property to DataSource1.

Next, select the Table object and in the Object Inspector change
its DatabaseName property to DBDEMOS. (This is the default alias
created when you installed Delphi. If this alias doesn’t exist,
either create and use an alias for the directory where Delphi
installed its sample database tables, or use the entire path in the
TableName property.) Change the TableName property to
ORDERS.DB (If you were able to set DatabaseName to DBDEMOS,
you can select this table name from the TableName drop-down
Delphi INFORMANT ▲ 22

Figure 4: The Fields editor dialog

DBNavigator
list.) You should now activate the connection to the table by set-
ting Active to True.

Now set the DBEdit component properties by changing the
DataSource property to DataSource1 and setting its DataField
property to OrderNo.

You are now ready to instantiate TField components. From the
Form’s window, double-click the Table object to display the
Fields editor dialog box. First, add a TField component for the
OrderNo field (from the ORDERS.DB table). Do this by click-
ing the Add button on the Fields editor dialog box, highlighting
OrderNo from the Available Fields list, and then clicking OK
to return to the Fields editor dialog box.

Next, add the calculated field. Click the Define button on the
Fields editor dialog box to display the Define Field dialog box.
In the Field Name text box enter CalcDemo. Delphi will auto-
matically add Table1CalcDemo in the Component Name text
box. You can optionally define an alternative component name,
but this is usually not necessary.
JULY 1995

Figure 3: Use the Define Field
dialog box to create calculated
fields.
At this point, select the type
of the calculated field. This
field type must correspond to
the data type you’ll assign to
this calculated field. In this
example no data will be
assigned to the calculated
field, so the field type is irrel-
evant. For simplicity’s sake,
select FloatField (this field
type does not require a size).
The Define Field dialog box
should look like Figure 3.
Click the OK button.
Figure 5: Sample code added to an OnCalcFields event handler.
The Fields editor dialog box should emulate the one displayed in
Figure 4. The objects and properties are now in place. Because you
instantiated the calculated field, an OnCalcFields event will be gen-
erated each time Delphi attempts to update the display of the
DBEdit component. Close the Fields editor dialog box.

To see that this event is occurring, select the Table component
and go to the Object Inspector’s Events page. Double-click the
OnCalcFields event to display the event handler. Enter the fol-
lowing code in the Table1CalcFields procedure:

Application.MessageBox(‘OnCalcFields’, ‘Here is one.’,mb_OK)

Your screen should look like Figure 5.

You’re done! Press 9 to compile and run your project.

Notice that even before the running form is visible, the mes-
sage box is displayed as a result of an OnCalcFields event. This
OnCalcFields event is produced when the form is initialized.
After you respond to this mes-
sage box, the form will appear.
Thereafter, the message box is
displayed each time you move
to a new record. It will also
display if you edit the order
number. (However, you
shouldn’t do this since the
Orders table has detail records
that rely on the value of the
order number field.)
More About OnCalcFields
Events
There are a number of special characteristics of OnCalcFields
events you need to be aware of to use them effectively. First, they
occur frequently. As mentioned earlier, every time a user
advances to a new record, or changes a value in a single field, an
OnCalcFields event triggers for that record.

In some cases, advancing to another record can result in several
OnCalcFields events. This occurs when you advance to another
master table record and you have calculated fields in a detail
table. Under these conditions, OnCalcFields events trigger for
each record in the restricted view of the detail table. In short, it’s
usually desirable to keep the code you attach to the OnCalcFields
events short and quick. It’s important to remember that placing
time-consuming operations in the OnCalcFields event can greatly
affect your form’s performance.

Another limitation of OnCalcFields events results from the
special state in which Delphi places itself during the event.
During the OnCalcFields event Delphi sets the State property
of the associated Table, Query, or StoredProc object to
dsCalcFields. When in this state, Delphi will not allow you to
assign new values to TField objects that are not calculated
fields. In other words, the only type of field you can assign a
value to during the OnCalcFields event is a calculated field.
(You can determine if a given field is a calculated field by
inspecting its Calculated property.)

box with one “regular” field and
one calculated field.
Delphi INFORMANT ▲ 23

DBNavigator

Figure 6: The modified form after adding five objects.
Also, be mindful that OnCalcFields is triggered by many events
that modify a DataSet. For example, navigating to a new record
may generate one or more OnCalcFields events. You must avoid
triggering these events with the code you add to the
OnCalcFields event handler. Failure to do so may result in
unwanted and uncontrollable recursion.

Under normal conditions, an OnCalcFields event triggers auto-
matically each time you modify a field in a record. This occurs
because the AutoCalcFields property of TTable, TQuery, and
TStoredProc components is True by default. If you change the
AutoCalcFields property to False, OnCalcFields events will only be
triggered automatically when Delphi first loads and displays a
record from a database.

Finally, remember that OnCalcFields events occur when objects
are initialized on an opening form. Consequently, the creation
order of objects can have an impact on the success of the code
you place in an OnCalcFields event. For example, if you are using
an OnCalcFields event to display lookup data, the lookup table
must be created and opened first. You can easily control the cre-
ation order of objects on a form by selecting View | Creation
Order from Delphi’s menu.
Figure 7: Fields instantiated for
Table2.
Creating a Calculation and Lookup Fields Example
The following example builds on the project we created with the
steps described earlier. (If you did not follow those steps, and want
to create this example, simply refer to the previous example.)

In this example you’ll add a DBGrid to the form. The modified
form will display the line item details for a given order number. This
DBGrid will also display information from three calculated fields.
Two of these fields will display lookup information from another
table, and the third field will display the results of a calculation.

First, add two additional Table and two additional DataSource
objects to the form. Then add a DBGrid component. When you
are done your form should look similar to Figure 6.

Select DataSource2 and change its DataSet property to Table2.
Select DataSource3 and change its DataSet property to Table3.
Select Table2 in the Object selector and set its DatabaseName to
DBDEMOS, its TableName property to ITEMS.DB, and its Active
property to True. Likewise, select Table3 and set its
DatabaseName property to DBDEMOS, its TableName property to
PARTS.DB, and its Active property to True.

Double-click on the Table2 object to display its Fields editor
dialog box. Select Add to display the Add Fields dialog box and
select all fields. Click OK to return to the Fields editor. Now
add the calculated fields. Click Define to display the Define
Field dialog box. At Field Name enter Description, at Field
Type select StringField, and at Size enter 25. Click OK.

Click Define again to add the second calculated field. At Field
Name enter Price, and at Field Type select CurrencyField.
Click OK to return. Click Define again and at Field Name
JULY 1995
enter Amount and at Field
Type select CurrencyField.
Click OK to return. Your
Fields editor dialog box
should look like the one
shown in Figure 7.

Select the DBGrid and set its
DataSource property to
DataSource2. Delphi will
now display live data in the
DBGrid. The fields in the
DBGrid will appear in the
order that they appeared in
the Fields editor dialog box.
Modifications
You’ll want to make a few modifications to the DBGrid’s dis-
play. First, remove the OrderNo field from display. This field is
part of the master record, and is displayed in the DBEdit
object. To do this, select the Table2OrderNo object and set its
Visible property to False.

You’ll also want to modify the order of the fields in the
DBGrid. You can change a column’s location by dragging the
column heading for a field in the DBGrid to a new location.
As you drag the mouse, the column will move. Drop the
columns in the order you want them to appear. Probably the
most reasonable order for these columns is ItemNo, Price,
Description, PartNo, Qty, Discount, and Amount. (You can
also change the order of the fields in a DBGrid by dragging the
field names to new locations within the Fields editor window.)

You may want to make additional changes to the DBGrid to
make it look better. For example, you can increase the size of
the form, and then increase the size of the DBGrid. You can
adjust the size of the individual fields in the DBGrid by drag-
Delphi INFORMANT ▲ 24

DBNavigator

Figure 8: The example form has been spruced up with a Label com-
ponent. The non-visual objects were placed over the DBGrid to remain
unobtrusive during design.

Cary Jensen is President of Jensen Data Systems, Inc., a Houston-based
database development company. He is a developer, trainer, and author
of numerous books on database software. You can reach Jensen Data
Systems at (713) 359-3311, or through CompuServe at 76307,1533.

Figure 9 (Top):
Adjusting the
creation order to
ensure that the
OnCalcFields event
does not try to
reference Table3
before it’s created.
Figure 10
(Bottom): A form
making use of
calculated fields.
ging the left column marker of the column header. Figure 8
shows an example of how the customized form might look.

It’s now time to add the OnCalcFields event-handling code.
Select Table2 and display the Events page of the Object
Inspector. Double-click on the OnCalcFields event to display its
event handler. Enter the following code:

procedure TForm1.Table2CalcFields(DataSet: TDataSet);
var

SubTotal : real;
begin
if Table3.FindKey([Table2PartNo.value]) then

begin
Table2Price.value := Table3ListPrice.value;
Table2Description.value := Table3Description.value;
SubTotal := Table2Price.AsFloat * Table2Qty.AsFloat;
Table2Amount.value :=

SubTotal - (SubTotal*(Table2Discount.AsFloat/100));
end;

end;

Notice that this code first attempts to locate the current value
displayed in the Table2PartNo field in Table3. It does this by
using the FindKey method. (Use the on-line help for more infor-
mation about FindKey.)

If FindKey returns True it means that a record in Table3 has been
located and corresponds to the part number in Table2. Under this
condition the lookup fields can be assigned. The value in the
ListPrice field of Table3 is assigned to the calculated field
Table2Price. And the value in the Description field of Table3 is
assigned to the calculated field Table2Description. This completes
the lookup operation.

The last two steps in this code are used to produce the calcu-
lated field. The values displayed in Table2Price (a lookup
field) and Table2Qty are multiplied, and then divided by the
percentage represented by Table2Discount. The results of this
calculation are assigned to the calculated field Table2Amount.
(Note: This operation was performed in two steps for the sake
of clarity. The entire calculation can be performed in a single
statement.)
JULY 1995
There is one last required step. The code attached to Table2’s
OnCalcFields event makes reference to Table3. Since this code
will be executed when Table2 is initialized, it’s essential to ensure
that Table3 is created before Table2. You do this by selecting Edit
| Creation Order from Delphi’s menu. Drag Table3 to a posi-
tion above Table2, as shown in Figure 9. Complete this opera-
tion by closing the Creation Order dialog box.

This step is optional, although recommended. Remove the refer-
ence to the Table1CalcFields procedure from the OnCalcFields
event for Table1 because it is no longer needed.

Press 9 to compile your project and run the form. Once the
form is running, your screen will look like Figure 10. Recall that
the Description and Price fields are produced by looking up the
Parts table. Also, the Amount field is produced by a calculation.
Conclusion
Calculated fields are an important part of database program-
ming. Using these fields you can display related data from other
tables, and perform calculations to display data that doesn’t oth-
erwise need to be stored in the database. ∆

The demonstration projects referenced in this article are available
on the 1995 Delphi Informant Works CD located in
INFORM\95\JUL\CJ9507.
Delphi INFORMANT ▲ 25

JULY 1995

A Question of Size
Or, Why Are Delphi Executables So Big?

Informant Spotlight
Delphi / Object Pascal

By Robert Vivrette

c
d

A
|

E veryone loves small, efficient programs. Perhaps that explains all the
hubbub. Since the release of Delphi, there has been quite a bit of dis-
cussion about the size of executable files created with Delphi. In this arti-

le we’ll discuss some of the issues relating to executable size, and present a
etailed picture of what exactly goes into a Delphi executable.

First, let’s see if we can understand the issue a little better. I created an example “do-nothing”
Windows application with Delphi and with Borland Pascal 7. The application presents a normal,
resizeable main window (see Figure 1). The main window (by default) has a control box in the
upper-left corner, minimize and maximize buttons in the upper-right corner, and can be resized.
There are no buttons, fields, or controls on the form. This type of application is what you get if
you choose File | New Project in Delphi and then immediately compile the result. To see how big
these resulting executable files are, take a look at Figure 2.

s you can see, Delphi applications are larger by more than a factor of 10. By using Options
 Project and selecting Delphi’s Optimize for size and load time option, the final executable

is reduced by about 37KB. However, both options are nowhere near the size of a Borland
Pascal 7 executable. Everyone else seemed to notice this as well. Borland’s answer to this is
accurate, if a bit vague. Here is the related excerpt from one of Borland’s FAQ (frequently
asked questions) sheets:
“Delphi’s VCL is based on RTTI and exceptions. This requires a ‘footprint’
of about 120Kb for an ‘empty’ application. The 200K you get has additional
debug info or is not optimized by the compiler. Note that the size of your
.EXE doesn't go to 400K for two buttons, but rather to 201K, i.e. after the
footprint each additional control just adds the ‘usual’ amount of data/code
size. Additionally, you can slim your .EXE’s down by checking the
“Optimize For Size And Load Time” checkbox on the Linker page of the
Options | Project dialog.”

That’s a satisfactory answer, but let’s dig a little deeper. What is Delphi
doing in that extra 140KB that has no apparent visual or functional effect
on the program? Let’s uncover the truth.
Getting Down to Basics
To answer this question, first we need to know which pieces of code are in
the final executable. To do this select Options | Project and choose the
Linker page. Then select the Detailed option in the Map file area. This
Delphi INFORMANT ▲ 26

Informant Spotlight

Figure 1 (Top): What’s going on? The executable file for a basic,
“do-nothing” form can consume a whopping 191KB of disk space.
Figure 2 (Middle): Here are the executable sizes for the form shown
in Figure 1, created with Delphi, Delphi (optimized), and Borland
Pascal 7. Figure 3 (Bottom): A portion of the map file created by
Delphi by selecting the Detailed option in the Map file area. Among
other things, this file is useful for discovering just what Delphi includes
in the executable files it produces.

Start Length Name Class

0001:0002 0067H Project1 CODE
0001:0069 00BDH Unit1 CODE
0001:0126 0ADAH Printers CODE
0001:0C00 0564H TypInfo CODE
0001:1164 0075H WinProcs CODE
0002:0002 0155H Dialogs CODE
0002:0157 0049H Buttons CODE
0002:01A0 22CAH Menus CODE
0003:0002 5E7FH Graphics CODE
0004:0002 6971H Controls CODE
0005:0002 76A1H Forms CODE
0006:0002 5075H Classes CODE
0007:0002 2242H SysUtils CODE
0007:2244 104EH System CODE
0008:0000 0E34H DATA DATA
tells Delphi to create a text file that provides additional informa-
tion about the content of an .EXE file. Named Project1.Map by
default, a portion of this file is shown in Figure 3.

The information provided in this map file is similar to what
Delphi includes in an .EXE file for use by an external debugger
(if you have Include TDW debug info checked on the Linker
page). This debug information identifies each source code file
and maps the line numbers used with the corresponding address
JULY 1995
of that compiled code in the executable file. Using information
like this, Turbo Debugger allows you to step through your pro-
gram’s lines of source code while it’s running.

Indirectly, this same information tells which lines of code actual-
ly made it into the .EXE file after linking. Remember, the
Delphi compiler performs “dead code elimination”, so any code
that’s not referenced in a program won’t be written to the exe-
cutable, and hence will not be listed in the map file.

Equipped with this information, it becomes just a matter of
reviewing this map file and finding the lines of source code in the
.EXE file. This is not a pleasant job, I assure you. However, the
resulting information is very useful, and helps us gain a much
deeper appreciation for the efforts that went into creating Delphi.

Let’s examine the results. Below is a list of the units included (at
least most of them) in our sample program. Most of these units
aren’t represented in their entirety in the final executable, so I
have listed only those features that are. Again, this is because
Borland’s smart linker removes code that isn’t referenced. As a
result, the information below provides a summary of all inherit-
ed behavior a Delphi developer receives with each and every
application created — all in only 154KB!
The Forms Unit
As its name implies, the Forms unit is responsible for all the
code necessary for creating and managing Forms. Since we do
have a form, it should come as no surprise that this unit gets
linked into our sample program. However, there’s a lot more
here than meets the eye.

CTL3D Support — The CTL3D and CTL3DV2 dynamic link
libraries (DLLs) provide a 3-D look to dialog boxes and window
controls. These DLLs essentially sub-class existing controls to pro-
vide them with an elegant 3-D look. You will really only see a dif-
ference in the form if you change its BorderStyle property to
bsDialog. However, it also serves as the default behavior through
the ParentCTL3D property of any controls placed on it.

Auto Scrolling Client Area — Though not immediately apparent,
our simple main form example has the ability to automatically scroll
its contents in case the window shrinks below a certain size. To test
this, place a button near the lower-right corner of a form and run
the program. When the form (and button) appears, resize the win-
dow so it partially obscures the button. Scroll bars will appear auto-
matically to provide a way of scrolling the button back into view.

Default Windows Message Handling — This is an essential,
low-level part of any Windows program. By providing default
message handling, Delphi greatly minimizes development time.
For C or C++ Windows programs, the programmer is generally
responsible for writing and maintaining the code necessary to
handle the flurry of message traffic for the application. For
Delphi however, we only need to generate events and write han-
dlers for those events. The maintenance of the Windows mes-
sage queues is handled for us.
Delphi INFORMANT ▲ 27

Informant Spotlight
Form Recreation — A very useful capability, it allows us to change
the basic class of a form (such as changing a normal resizeable win-
dow to a dialog box). Normally we would have to jump through a
number of hoops to achieve this, but Delphi manages it by auto-
matically recreating the form for us. To see this behavior, create an
OnClick event for the form and insert the following code:

if BorderStyle = bsSizeable then
BorderStyle := bsDialog

else
BorderStyle := bsSizeable;

Now, by clicking on the form, it will toggle between a resizeable
window style, and a fixed-size dialog box style.

Different Form Styles — Embedded in our sample application is
support for all the types of forms Windows creates. These
include: Standard resizeable forms, MDI Forms, MDI Children,
and Dialogs. It also gives us the ability to force a window to stay
on top of all other running applications.

Menus — Our form already has one (the System menu), but
support for the application menu as well as any pop-up menus
has also been provided. Try adding a pop-up menu to the form
with four or five menu items on it. Now compile and check the
executable size. Only about 300 bytes have been added. Not
bad! We can also add or change the application’s system menu.

Form Scaling — Using the PixelsPerInch and Scaled properties of
a form, our sample also has the ability to dynamically size itself
to handle different resolutions at run-time.

Color and Font Changes — Normally quite a chore, Delphi has
provided an easy and elegant way to alter the entire appearance
of the form. We can display text in any available font and can
change the form’s color based on a user’s Windows color scheme.

User Events — Perhaps one of the more important capabilities,
this support allows us to connect custom procedures to forms.
We can attach code to a wide range of events such as Mouse
Click/Movement, Drag/Drop, and Keyboard events.

Screen Object Management — The Screen object encapsu-
lates all the basic information about the current display envi-
ronment. We can easily access the screen resolution, pixels per
inch, available fonts, and cursors. The Screen object can also
provide a list of, and access to, all forms available in the cur-
rent application.

Exception Handling — Our application also provides a rich excep-
tion management system. It smoothly handles error conditions
relating to forms, and manages the use and restoration of memory
from Windows memory pools. Much of the code also protects us
against lost resources in case the application terminates abnormally.

Idle-State management — This allows the programmer to pro-
vide behavior for an idle application. For example, the program-
mer may want some special activity while waiting for user input.
JULY 1995
This is different from having timer events in that idle-state
events only occur while the application is idle (i.e. no other
events are occurring).

Hints — This provides support for the Help Hints (or “balloon
help”) that appear when the mouse pauses for a moment over a
form or component. It also provides support for information in
the Status bar. To see this, add a short sentence to the Hint prop-
erty of the form and set ShowHint to True. After compiling,
check the size of the executable. No increase!
The Controls Unit
This unit defines the basic TControl object with its descendants
TWinControl and TGraphicsControl. This unit plays a key role in
adding Delphi behavior to standard Windows controls (such as
list boxes, buttons, etc.). The behaviors that appear in our sam-
ple application are listed below.

Drag-and-Drop — All the basic drag-and-drop behavior is here.
This allows components or on-screen items to be moved to
another location via drag-and-drop. A typical use for this behav-
ior might be, for example, dragging items from one list box to
another (as in the case of the Dual list box form template pro-
vided with Delphi).

Device Contexts Management — A lot of drudgery is eliminat-
ed for developers because they don’t have to deal with Windows’
device contexts. Many controls have new graphical behaviors
(such as the speed buttons) that are automatically managed
through Delphi’s encapsulation of device contexts into canvases.

Parent and Children Lists — Our application automatically
maintains internal lists so parent objects can keep track of their
children. In the case of Delphi however, these lists enable the
application to correctly destroy components that are contained
within other parent controls. It also allows the parent font and
hint overriding capabilities.

Control Scaling — Control scaling allows the control to
change its scale in percentages or in relation to other objects.
This behavior can be used, for example, when a form is
resized, or when the application needs to adjust to displays
with different resolutions.

Cursor Management — This allows the control to change the
cursor when the mouse pointer moves over the control’s
boundaries. Examples of this might include the drag-and-drop
cursors (visually allowing or restricting dropping of an object
over a control) or changing the cursor to a shape more appro-
priate to the control (such as a hand for a spinner control).

Z-Order Management — In addition to X and Y screen coordi-
nates, all Windows controls also have a Z-order (or stacking
order) on the form. This determines which objects are stacked in
front of other objects on the screen. The Delphi controls can
change the stacking order so some controls can be moved in
front or behind others.
Delphi INFORMANT ▲ 28

Informant Spotlight
Mouse Detection — This adds basic mouse detection for con-
trols. Virtually any control can now respond to mouse clicks and
mouse movement.

Popup Menus — Particularly with the new interface elements
appearing in the latest versions of Windows and OS/2, users are
demanding a higher level of ease-of-use. Pop-up menu support
allows individual controls to provide context-sensitive menus at
the click of a mouse button.

Tab-Order Management — This code allows us to modify the
tab sequence of controls on a form. Typically the TabOrder and
TabStop properties are only set at design time, but Delphi allows
us to modify these at run-time as well.

Control Alignment — This allows controls to align in various
ways relative to their parent controls or the form. By using
this capability, we can have controls that dynamically adjust
their position when a user resizes a form. You can see this
behavior by placing a ListBox component on the form and
setting its Align property to alClient. When the program runs,
the list box will now dynamically adjust its size when the form
containing it is resized.

User Events — Perhaps one of the more important capabili-
ties, this support allows us to connect custom procedures to
controls. We can attach code to a wide range of events such as
Mouse Click/Movement events, Drag/Drop events, and
Keyboard events.

Other Support — Our sample application also provides support
for Short and Long Hints, Fonts, Colors, Palettes, and CTL3D.
The Printers Unit
You may not recall asking this program to print, but it can.
To see this, add an OnClick event handler to a form and enter
Form1.Print as the only line of code. When you click on the
form, it will print itself. Granted you will only get a big gray
rectangle on the page, but there is a significant amount of
work behind that rectangle. The Printers unit adds the behav-
iors listed below.

Encapsulation of Printer Support — Printing in Windows is a
lot of work. The creators of Delphi have encapsulated all the
printing behavior into a neat little package called the Printer
object. To begin printing use Printer.BeginDoc and to end
printing use Printer.EndDoc. The Printer object has a canvas
that we simply write on as we wish between these two com-
mands. The Printer object saves the developer the unpleasant
task of working with a printer device context.

Exception Handling — Exception handling for this unit allows
the program to overcome potentially fatal problems, such as select-
ing an invalid printer, failures in the Windows print system, etc.

Management of Default Printers — Each computer has a list of
available printers and Delphi grants us easy access to this list.
JULY 1995
The Graphics Unit
The Graphics unit automatically manages a wide range of graph-
ics chores for us. The foremost of these is the encapsulation of
the Windows device contexts into the Canvas property. The
Graphics unit also provides the support outlined below.
Loading Graphics from a Resource File — This allows the pro-
gram to extract graphics data (icons, bitmaps, etc.) from an
embedded resource file and incorporate this data into object
properties (such as a Picture or Glyph).

Font Support — By encapsulating Windows font support into
the Font object, the program can freely and easily display text
anywhere on a form without requiring the programmer to issue
low-level instructions to load or create the fonts needed.

Pens and Brushes — Need a green pen three pixels wide? How
about a hatched brush with a clear border? Rather than create
these, they are encapsulated in the Pen and Brush objects.

Color Constants — These make it easier to select colors for
use in the application. Rather than request a specific RGB
(Red/Green/Blue) color combination (i.e. the statement
RGB(0,128,255) to refer to a bright, light blue), we can now
refer to a color by means of color constants such as clGreen and
clWhite. We also have access to colors that depend on the user’s
color scheme, such as clButtonFace and clWindowText. These
allow the user to change the color preferences, and the program
remains consistent with the user’s desktop environment.

Canvases — Delphi captures all the behavior of Windows device
contexts into the Canvas object. We simply draw, paint, write
text, et cetera, on the canvas and it appears on the screen.

Graphics Exceptions and Memory Allocation — This code
saves us from many graphics pitfalls. It handles graphics error
conditions, and manages the use and restoration of memory
from Windows memory pools.

Bitmap Manipulation — This encapsulates basic management
of bitmap and icon images. It allows us to copy, move, and
stretch images with very little effort. For example, if you place a
TImage component that is 100 pixels square on a form, and then
load a 50x50 pixel bitmap, it will display only in the top-left
corner of the component’s boundaries. However, simply setting
the TImage’s Stretch property to True will extend the bitmap’s size
to cover the entire 100x100 area. Without this, we would have
to write custom support for the Windows StretchBlt function.

Automatic Palette Support — Whenever we deal with graph-
ics of different color “depths” (e.g. 16 vs. 256 colors),
Windows needs to switch into the appropriate color palette so
the colors on screen appear correctly. Delphi manages most of
this for us automatically.

Metafiles — Windows Metafiles are a sort of “graphics macro
language”. They package all sorts of Windows GDI calls into a
graphics file format that is easily exchangeable between Windows
Delphi INFORMANT ▲ 29

Informant Spotlight
programs. I recently had to add my own metafile support to a
Borland Pascal 7 program and it wasn’t a pleasant experience.
The metafile format is an integral part of the Delphi graphics
system; we can load, save, and display metafiles with no more
effort than that required for simple bitmaps.

Clipboard Support — This allows Delphi to easily move
graphics data (in many supported formats) to and from the
Windows Clipboard.

Handle Caching — Delphi’s graphics system can cache various
graphic objects such as pens, brushes, fonts, etc. By caching
these objects, the program can quickly flip between various
objects without having to recreate them each time. This is entire-
ly invisible to the programmer.

Management of Stock Objects — This adds some minor sup-
port for the various stock graphic objects that Windows has
available (such as a black pen, or a white brush).

User Event Handling — These events are the “hooks” we can
put in our code to extend an object’s basic behavior. For exam-
ple, events allow us to have a graphic respond to the mouse pass-
ing over it, or to have a bitmap know when it has changed.
The Dialogs and Buttons Units
The Dialogs unit adds some minor, low-level support for common
dialog boxes. Additional segments of the Dialogs unit are not
linked into the executable until we add one or more of the com-
mon dialogs from the Dialogs page of the Component Palette. The
Buttons unit adds support for the TSpeedBtn and TBitBtn compo-
nents. However, most of the unit has been linked. What remains is
about four lines of code that clean memory usage of BitBtn glyphs.
The Classes Unit
The Classes unit contains the declarations for many of the base
object classes used by Delphi. Much of the support provided is for
low-level capabilities such as memory management, string manage-
ment, exception handling, reading from and writing to streams,
etc. Interestingly however, this unit also provides a Quicksort rou-
tine for sorting string lists, and an object reader/writer that has the
functionality used in most object’s Read and Write access methods.
Robert Vivrette is a contract programmer for a major utility company. He has worked
as a game designer and computer consultant, and has experience in a number of pro-
gramming languages. He can be reached on CompuServe at 76416,1373.
The Menus Unit
Not surprisingly, this unit adds support for all menu types to
our programs. The principal functionality is its ability to cre-
ate, display, and allow modification of the menus and menu
items. The two principal objects added to our program are
the TMainMenu and TPopupMenu objects. The behaviors list-
ed below are also included.

Pop-up Menus — Pop-up menu support is added giving the
application the ability to show context-sensitive pop-up
menus when the user right-clicks over a component or form.
Because all base support is already there, adding a fully func-
tional pop-up menu (with four or five menu items) to the
main form only adds about 300 bytes to the program’s size.
JULY 1995
Menu Text and Shortcuts — This enables the user to easily
define text and shortcut keys for menu items.

Checked and Disabled States — Some menu items allow a
checked (or toggled) condition, while all menu items can be dis-
abled if required. The code included allows the developer to
access such menu items, read and modify their Checked state,
and enable or disable them.

Moving and Changing Menu Items — Normally a fairly com-
plex job, the developer can now change menu items and even
merge menus from different forms.

Hints — Hints are automatically included as part of menu
items. The Hints respond to an application’s OnHint events and
can, for example, provide status-line hints on an item currently
selected in a menu.

Help Contexts — If a Help system is tied to the application, the
menu items can be assigned context numbers allowing them to
provide help information to the user at run-time. For example, a
user might activate a pop-up menu by right-clicking on a form
or component, and move the selection bar down to one of the
menu items. Before clicking on that item, pressing 1 calls the
assigned topic from the help system.

User Events — This code enables support for user-related
events. For example, if we want something special to occur when
a pop-up menu is activated (such as a sound effect), it could be
done using the OnPopup event for the PopupMenu object.
Conclusion
As you can see, there is quite a bit of inherited behavior in Delphi’s
executables. Equipped with this knowledge, 154KB of inherited
code doesn’t seem like much does it? Somewhere down the line I’d
like to see extensions to the compiler options that would allow pro-
grammers to tailor this inherited behavior to suit their needs —
perhaps a series of check boxes disabling support for certain fea-
tures, such as MetaFiles or PopupMenus, for example.

The developers of Delphi have gone to great lengths to provide
a rich and powerful programming environment for all of us. By
encapsulating complex Windows programming concepts into
easy-to-use properties and methods, the Delphi environment
saves programmers from having to deal with the drudgery of
programming. Instead, it allows us to concentrate on the cre-
ative and innovative aspects of software development. ∆
Delphi INFORMANT ▲ 30

JULY 1995

A Little Memo Help
Manipulating the Cursor in Delphi’s Memo Components

OP Tech
Delphi / Object Pascal / Windows API

By Bill Todd
D elphi includes two classes of memo control components, TMemo and
TDBMemo, that enable the user to edit text. Since both of these con-
trols encapsulate the Windows multi-line edit control they are limited to

a maximum of 32KB of text.

To make editing the text in a memo control component easier, the TMemo and TDBMemo con-
trols treat the text as an array of Pascal strings that you can access via the memo’s Lines property.
Each element in the string array corresponds to one line in the memo. This enables you to manip-
ulate the text in a memo using all the Object Pascal run-time library procedures and functions for
Pascal strings.

Access to the contents of the Windows multi-line edit control as an array of strings is provided by
the TStrings class. TStrings includes the methods listed in Figure 1 that let you manipulate the text
in a memo.

The TStrings class also includes a Count property that tells you the number of lines the memo con-
tains. Count is zero-based, so the statement:

Panel1.Caption := Memo1.Lines[0];
displays the first line of the memo inPanel1, and:

Panel1.Caption := Memo1.Lines[Memo1.Lines.Count - 1];

displays the last line of the memo in the panel.
But Where’s the Cursor?
While the Lines property provides an easy, intuitive interface between the
Pascal String type and the text in a memo, there is one problem: There is
no way to manipulate the cursor. TMemo does have the SelStart property
that allows you to get or set the current cursor position. However, the
position is given as the number of bytes from the beginning of the memo
text including the carriage return and line feed characters at the end of
each line. This is completely incompatible with the line and column posi-
tion you need when working with the memo’s Lines property.

Fortunately, TMemo and TDBMemo encapsulate the Windows multi-line
edit component and there are two Windows API calls that save the day.
Delphi INFORMANT ▲ 31

Method Function

Add Add a line to the memo.

Clear Delete all lines from the memo.

Delete Delete a line from the memo.

Exchange Exchange the position of two lines.

IndexOf Find line number of specified text.

Insert Insert a line into the memo at any location.

Move Move a line from one place to another.

Figure 1: Selected TStrings methods that enable you to handle text in
a memo.

OP Tech

Figure 2 (Top): The custom GetMemoLineCol procedure obtains the
cursor’s position in the memo component as a line and column num-
ber. Figure 3 (Bottom): Setting the cursor position of a Memo or
DBMemo component to a specified line and column number.

{ Get the line number and column number
the cursor is positioned at in the memo. }

procedure GetMemoLineCol(Memo: TCustMemo;
var MemoLine, MemoCol: Integer);

begin
with Memo do
begin

{ Get the line number of the line
that contains the cursor. }

MemoLine := SendMessage(Handle, EM_LINEFROMCHAR,
SelStart, 0);

{ Get the offset of the cursor in the line. }
MemoCol := SelStart - SendMessage(Handle, EM_LINEINDEX,

MemoLine, 0) + 1;
end;

end;

{ Set the cursor position in a memo
to the specified line and column. }

procedure MemoCursorTo(Memo: TCustomMemo;
MemoLine, MemoCol : Integer);

begin
Memo.SelStart := SendMessage(Memo.Handle, EM_LINEINDEX,

MemoLine, 0) + MemoCol -1;
end;

end.
The first of these is the Windows EM_LINEFROMCHAR message.
Sending this message to a Windows multi-line edit control along
with a character offset returns the number of the line containing
that character offset. Therefore, the statement:

MemoLine := SendMessage(Memo1.Handle, EM_LINEFROMCHAR,
Memo1.SelStart, 0);

returns the number of the line that contains the cursor.

The first parameter in the call to SendMessage is the memo com-
ponent’s window handle. This identifies the component the mes-
sage will be sent to. The second is the constant that identifies the
message to send, EM_LINEFROMCHAR in this case. The third para-
meter is the offset from the beginning of the memo of the char-
acter whose line number you want to find. In this case you want
to find the line that contains the cursor. The memo’s SelStart
property is what you need, since it gives the cursor position as an
offset from the beginning of the memo.

The second Windows message you need is EM_LINEINDEX.
Sending the EM_LINEINDEX message to a memo returns the posi-
tion of the first character of the line you specify as an offset from
the beginning of the memo. For example:

LineStart := SendMessage(Handle, EM_LINEINDEX, 3, 0);

returns the offset of the first character of the fourth line of the
memo. The first two parameters in the SendMessage call are the
same as before. The third parameter is the number of the line
whose offset you want to find.
Some Custom Procedures
Using these two messages you can write a generic procedure that
returns the line number and column number of the cursor posi-
tion. You can also write a second procedure that will move the
cursor to any specified line and column number. As you have
already seen, getting the number of the line that contains the
cursor is a matter of sending the EM_LINEFROMCHAR message to
the memo. To determine which column the cursor is in, subtract
the offset of the first character of the line from the cursor posi-
tion given by SelStart property. Figure 2 contains the complete
code for the custom GetMemoLineCol procedure.
JULY 1995
This procedure takes three parameters. The first is the Memo or
DBMemo component whose cursor position you wish to find.
Note that the type of this parameter is TCustomMemo.
TCustomMemo is used because it is an ancestor of both TMemo
and TDBMemo. This allows the actual parameter to be of either
type. The second two parameters are the line and column num-
ber that are returned. In this procedure the line is zero-based and
the column is not.

Figure 3 shows the MemoCursorTo procedure that will set the
cursor position of a Memo or DBMemo component to the line
and column number you specify. (Again, the line is zero-based
and the column is not.) This procedure uses the EM_LINEINDEX
message to set SelStart to the offset of the first character of the
specified line plus the column number minus 1.

To make it easy to use these procedures in any application, put
them in a separate unit along with any other memo-related pro-
cedures you write. Then simply add the unit to the uses clause in
any program that needs these procedures. Figure 4 shows the
complete unit, MEMOS.PAS.

Figure 5 shows the form for a simple test program to demon-
strate these procedures. The first button moves the cursor to line
3 column 5 in the text. The second displays the current cursor
position in the panel at the bottom of the form.
Delphi INFORMANT ▲ 32

JULY 1995

unit Memos;

interface

uses WinProcs, SysUtils, StdCtrls, Dialogs, Messages;

{ Get the line number and column number the cursor
is positioned at in the memo. }

procedure GetMemoLineCol(Memo: TCustomMemo;
var MemoLine, MemoCol : Integer);

{ Set the cursor position in a memo to the specified
line and column. }

procedure MemoCursorTo(Memo: TCustomMemo;
MemoLine, MemoCol: Integer);

implementation

{ Get the line number and column number the cursor
is positioned at in the memo. }

procedure GetMemoLineCol(Memo: TCustomMemo;
var MemoLine, MemoCol : Integer);

begin
with Memo do
begin

{ Get the line number of the line that
contains the cursor. }

MemoLine := SendMessage(Handle, EM_LINEFROMCHAR,
SelStart, 0);

{Get the offset of the cursor in the line.}
MemoCol := SelStart - SendMessage(Handle,

EM_LINEINDEX,
MemoLine, 0) + 1;

end;
end;

{ Set the cursor position in a memo to the specified
line and column. }

procedure MemoCursorTo(Memo: TCustomMemo;
MemoLine, MemoCol : Integer);

begin
Memo.SelStart := SendMessage(Memo.Handle, EM_LINEINDEX,

MemoLine, 0) + MemoCol - 1;
end;

end.

Figure 4 (Top): The complete code for the Memos unit. Figure 5
(Bottom): The Cursor Demo application in action.

OP Tech

procedure TForm1.SetCursorBtnClick(Sender: TObject);
begin

{ Move the cursor to line 3, column 5. }
ActiveControl := Memo1;
MemoCursorTo(Memo1, 2, 5);

end;

procedure TForm1.Button2Click(Sender: TObject);
var

MemoLine, MemoCol: Integer;
begin

{ Display the memo's cursor position. }
GetMemoLineCol(Memo1, MemoLine, MemoCol);
Panel1.Caption := 'Line: ' + IntToStr(MemoLine) +

' Col: ' + IntToStr(MemoCol);
end;

Figure 6: The OnClick event-handling procedures for the Set
Cursor Position and Get Cursor Position buttons.
Figure 6 shows the code for the two buttons. Note the statement:

ActiveContol := Memo1;

in the SetCursorBtnClick procedure. When you change the cur-
sor position in a Memo component, the memo must have
focus or the cursor will seem to disappear. This statement
moves focus from the button back to the memo before calling
the MemoCursorTo procedure.
Conclusion
Delphi’s memo components let you access the text in the memo
as an array of strings. However, they provide no way to locate or
move the cursor using the line and column position notation.

The Windows API messages EM_LINEINDEX and EM_LINE-
TOCHAR let you convert the cursor position between line and
column, and character offset so you can easily determine or
change the cursor position. ∆

The demonstration unit and form referenced in this article are
available on the 1995 Delphi Informant Works CD located in
INFORM\95\JUL\BT9507.
Delphi INFORMANT ▲ 33

Bill Todd is President of The Database Group, Inc., a consulting firm based near
Phoenix. He is also a member of Team Borland (supporting Paradox on CompuServe)
and a speaker at all Borland database conferences. Bill can be reached at (602) 802-
0178, or on CompuServe at 71333,2146.

JULY 1995

Meet the .DFM File
Modifying Delphi’s “File Behind the Form”

Visual Programming
Delphi

By Sedge Simons, Ph.D.
T he graphical properties of a Delphi form and its components are stored
in a .DFM file. In this article, we’ll see how to open and edit this file,
making short work of global changes or component creation, and giving

you an additional approach for troubleshooting.

When you create a form, Delphi maintains both a unit file (with a .PAS extension), and a graphi-
cal form file (with a .DFM extension). A simple form and the corresponding unit are shown in
Figures 1 and 2. Looking at the unit file in Figure 2, you’ll notice that it does not include any
specifications of the properties of the form or its components, only declarations of the objects
themselves. Delphi stores the properties in a separate file, the graphical form file, which we’ll refer
to as the .DFM file.
The .DFM File
Believe it or not, Figure 1 is a .DFM file. You see, the Delphi Form Designer is really a graphical
editor for the .DFM file. As you place, resize, and rearrange components with the Form Designer,
Delphi updates the .DFM file accordingly, much like it updates declarations in the Object Pascal
unit file.

The creators of Delphi included a second way to edit the .DFM file. From the Open File dialog
box, select a file type of Form file (*.DFM) and select the .DFM file with the same name as the
unit you’re using. If you’re currently editing the form in the Form Designer, Delphi will offer to
Figure 1: This sample form contains only one compo-
nent, a TShape named Shape1.
save your changes and close the Form
Designer. Naturally, Delphi does not allow
you to edit the same .DFM file with two
editors at once.

Figure 3 shows the .DFM file in the Code
Editor. Remember that this is the same file
shown in Figure 1, but it is now revealed
through the Code Editor rather than the
Form Designer.

We can make several observations looking at
the listing in Figure 3:
• The .DFM file doesn’t contain Object

Pascal code.
Delphi INFORMANT ▲ 34

Figure 2: This is the unit file, Demo1.PAS, that goes with the form in
Figure 1. Notice that it doesn’t specify any properties of the form or the
component.

Figure 3: This is the .DFM
file, Demo1.DFM, that
defines the form in Figure
1. Graphical form files are
automatically given the
same name as the unit file,
but with a .DFM extension.

Visual Programming
• Many of the properties are familiar from the Object Inspector.
• A lot of familiar properties are not included in the .DFM file.

Let’s take these observations one at a time.

It’s not Object Pascal code. No, it’s not Object Pascal, so don’t
use the Object Pascal assignment operator (:=) or statement ter-
minator (;) by mistake. The .DFM file is stored more like a data
file, and the Code Editor has converted it to a text format that
you can edit. If you try to look at the file in Notepad or another
editor, you will not see this converted view. You can, of course,
use the Clipboard to copy and paste text between the Code
Editor and Notepad, or other applications. You can also use File |
Save As with a .TXT extension to save the file in ASCII format.

Many of the properties are familiar from the Object Inspector.
Yes, these are the same properties. Some properties, like Font, are
expanded using the familiar dot notation. You’ll see Font.Size,
Font.Style, and so on. You can change these properties here just
as you can in the Object Inspector.

A lot of familiar properties are not included in the .DFM file.
In fact, many are missing. How does Delphi know that Shape1 is
a rectangle, for example? The answer is that Delphi only stores
those properties that differ from the default properties of the
component. This is really an effect of inheritance. Shape1 inherits
the default properties of a TShape component, unless you set dif-
ferent properties. You can add any legitimate property settings to
the .DFM file if you want to override the default properties.
JULY 1995
This inheritance has a serious implication. If you change the
default properties of components on your palette, then return to
an old project, the default properties of components in that pro-
ject will assume their new default values. This is how inheritance
is supposed to operate, but if you’re not expecting it, you might
be shocked at how your project is changed. Imagine all your rec-
tangles turning into ellipses because you defined stEllipse as the
default shape for TShape components!

You’ll probably never change the defaults of components that ship
with Delphi, but the moral is to be thoughtful in choosing
default properties in your own components. And be aware of how
subsequent changes you make to your palette might affect old
projects. If you feel you must change the default properties of a
component, but are concerned about backward compatibility,
consider creating a new component with new defaults instead.
Editing the .DFM File
Having access to the .DFM file in the Code Editor provides some
powerful capabilities. Among the most useful is search-and-replace.
Let’s say you want to change the font used throughout a form from
System to Arial. This process could be tedious in the form designer,
and you might miss a few objects, particularly if they are on different
notebook pages. (You couldn’t use Edit | Select All in the Object
Inspector since some components don’t have a Font property.)
Instead, just use the Code Editor to replace ‘System’ with ‘Arial’.
You could also replace colors (e.g. clWindowText with clBlack) so the
colors on your form will not depend on the user’s configuration.

You might also find that you can solve some alignment, center-
ing, or sizing problems more easily by setting properties like Left,
Top, Width, and Height through the Code Editor rather than by
using the Object Inspector or Alignment Palette.

Occasionally, a debugging problem may send you to the .DFM
file. If you’ve restructured a data table and changed some field
names, references to the old names might linger in the .DFM
file. If you’re sure you’ve fixed all the references in the unit file
and the problem persists, search the .DFM file for the offending
field name.
Delphi INFORMANT ▲ 35

Visual Programming
Finally, consider the problem of creating many similar compo-
nents. Copy-and-paste might be faster in the Code Editor than
in the Form Designer, or you might prefer to use the Clipboard
to paste text from another application. You could, for example,
write a Word for Windows macro that generates the appropriate
text for 100 rectangles in a 10-by-10 grid, then paste that text
into the .DFM file. You might even create a Delphi project than
writes a text file you can paste into a .DFM file!

If you do create or delete components in the .DFM file, don’t
forget to update the unit file. When you use the Code Editor to
change the .DFM file, you don’t have Delphi helping you keep
everything synchronized.

Also remember that the .DFM file is strictly a design object. You
will see your changes when you go back to the Form Designer,
but the .EXE file is not changed until you recompile the project.
Conclusion
Delphi does so much of the work for us that most of the time we
can forget that the .DFM file exists. But easy access to this file is
one of the many features that makes Delphi so flexible. Hopefully
these examples will have you thinking about even more ways of
beefing up your RAD repertoire through the .DFM file. ∆
JULY 1995 Delphi INFORMANT ▲ 36

Dr. Simons is a senior systems analyst at Jensen Data Systems, Inc., a Texas-based
provider of Database training, consulting, and application development. He writes
applications and does consulting in Delphi and Paradox. You can reach him through
CompuServe at 70771,75 or by calling Jensen Data Systems, Inc. at (713) 359-3311.

New & Used
B Y D O U G H O R N

The Developers Visual Suite Deal
A Truly Sweet Deal from Visual Tools
T he Developers Visual Suite Deal from Visual
Tools does not mince words. It promises to
provide you with the VBX components neces-

sary to build an Excel-compatible spreadsheet, word
processor, spell checker, image viewer, and unparal-
leled charting package. On most of these promises,
the Suite Deal delivers.

The Developers Visual Suite Deal is five component packages
bundled together. These components can be used as dynamic
linked libraries (DLLs), C class libraries, or Visual Basic controls
(VBXes). This suite was clearly assembled with the serious devel-
oper in mind. It contains the tools necessary to build an inte-
grated software application that could rival many on the market.
Used individually, its tools are doubly valuable — they allow
Delphi developers to use these popular functions in their appli-
cations with a minimum of programming.
The First Impression 3D combination chart shows impressive charting
capabilities.
First Impression

First Impression is arguably the Suite Deal’s flagship product. It
can create almost two dozen charts, including two and three-
dimensional versions of pie, bar, and Gantt charts. What is
more, First Impression’s high degree of customization creates the
appearance of hundreds of chart combinations.

As a charting tool, First Impression compares favorably with
the Chart F/X VBX included with Delphi (although a more
advanced version of Chart F/X is available that more evenly
approximates First Impression’s capabilities). First Impression
offers a more sophisticated array of charts and graphs including
doughnut and combination charts. It also features a number of
formatting options such as gradient fills, and screen or printer-
optimized output.
JULY 1995
First Impression’s fine-tuning does come at a price, however. It’s
not as highly integrated with Delphi as Chart F/X is. While First
Impression’s ability to allow end-users to customize charts at run-
time is very nice, some features are only selectable at run-time,
and not through Delphi code.

This drawback aside, First Impression adds a number of useful
‘extras’ that help create professional-looking charts. Backgrounds
can include graphics, gradient or pattern fills, and a large assort-
ment of other design elements. Three-dimensional charts allow
the user to configure such parameters as view angles, lighting
sources, line smoothing, and column shape. Furthermore, First
Impression’s three-dimensional shadowing and dithering are first
rate, enhancing the appearance of these charts.
Delphi INFORMANT ▲ 37

F
d
s
d
o
t
b
r
a

With VisualWriter, this simple word processor application was created
in Delphi in about 10 minutes.

New & Used
irst Impression charts may be modified in one of two ways:
irectly, or through the use of a Formula One spreadsheet. While
etting chart datapoints through Delphi code is possible, this
irect approach requires much code and extensive use of the peri-
d key (.), and is certainly not the preferred method. The ability
o link First Impression charts to Formula One spreadsheet files is
etter. These files can then be changed and updated to instantly
eflect changes in the underlying data. This solution suffices,
lthough it’s not as useful as a direct DataSource link would be.
Formula One spreadsheet and edit box components in a Delphi appli-
Formula One
Formula One is Visual Tools’ Excel-compatible spreadsheet.
As noted earlier, it forms the link between program data and
First Impression charts. However, Formula One is capable of
much more.

Formula One includes two VBX controls: a spreadsheet and
an edit box. These two objects link easily via the spreadsheet
control’s EditBox property. Such thoughtful integration is
found throughout the suite. Formula One spreadsheets can be
modified by the end-user as any Excel-type worksheet file.
However, the program also includes a more useful interface.
Selecting the spreadsheet control’s ApplicationDesigner prop-
erty calls the Formula One application screen. From this
screen, designers can create any number of pre-configured
worksheets. Changes made to the worksheet here are reflected
in the Delphi control. Once the sheet is complete, the devel-
oper can turn off whichever editing rights she chooses to pro-
tect the finished sheet.

While Formula One is called Excel-compatible, it contains a
number of features — such as in-cell editing — that many
users may find preferable to Excel’s. On the other hand,
although Formula One provides a great many mathematical
and financial functions, it does not include Excel’s more
advanced add-in libraries or Solver capabilities. As a spread-
sheet component, however, it has all the features most develop-
ers would probably use.
JULY 1995
VisualWriter
Like Formula One, VisualWriter is a multi-control VBX.
VisualWriter’s four controls are text, button bar, status bar, and
ruler. The text control — where end-users will type their docu-
ments — is the main component. It contains a property linking
it to each of the others, much the same as Formula One spread-
sheet controls link to edit boxes. With the properties linked, the
VisualWriter controls almost immediately look and behave like a
word processor. All that’s left for the developer is to add a menu
and a series of program functions, such as Open or File | Save.

VisualWriter allows developers to create a word processor as
powerful as they choose it to be, since all functions are created
by the developer. With the power of Delphi behind them, pro-
grammers should be able to conjure up everything from feature-
rich stand-alone word processors and HTML generators, to sim-
ple letter writers integrated into larger applications.

VisualWriter can save files in its native format, or in rich text
format (RTF) for exchange with other Windows word processor
applications. It also offers two print methods — PrintForm that
prints at screen resolution, or Print, the standard printer-resolu-
tion printing command.

The VisualWriter documentation is sparse compared to the thick
manuals for First Impression and Formula One. It suggests a
plan for creating a full-fledged word processor with VisualWriter
components, but falls short of truly describing the process.
Fortunately, most experienced developers will be able to figure
out these details.
VisualSpeller
VisualSpeller is a 100,000-word spell checker VBX that func-
tions seamlessly with VisualWriter components. VisualSpeller
also works independently in any Delphi application.

Visual Speller is excellent. It goes far beyond the capabilities of
the spell checkers included with most Windows applications —
not only does it allow multiple dictionaries and custom dictio-
Delphi INFORMANT ▲ 38

cation.

New & Used

A Delphi application
linking a Formula One
spreadsheet to a First
Impression two-dimen-
sional, open-hi-low-
close chart, with an
image and gradient-fill
background.

Developers Visual Suite Deal is a suite
of five VBX components for Delphi
developers, featuring high quality
three-dimensional charting, Excel-com-
patible spreadsheet, word processor,
100,000+ word spell checker, graph-
ics file viewer, and conversion compo-
nents. Although the graphics VBX is
incompatible with Delphi, the package
is excellent and well worth the money.

Visual Tools
15721 College Blvd.
Lenexa, KS 66219

Price: Suite US$399;
First Impression only US$249;
Formula One only US$249;
VisualSpeller only US$149;
VisualWriter Pro version only US$249.

Phone: (913) 559-6500
Fax: (913) 599-6597
naries, but also includes options available in few other applica-
tions. For example, one of the more useful options is “Allow
Joined Words”. As Madison Avenue and Silicon Valley continue
to force words such as OpenDoc and VisualSpeller on us, it’s
nice to finally have a spell checker that recognizes them.

Another nice VisualSpeller feature is the ability to tell the com-
ponent how to search for suggestions. There are eight techniques
available, ranging from simple capitalization to exchanges, inser-
tions, and deletions. In this vein, VisualSpeller also allows users
to provide suggestions even for properly spelled words. This
method, while tedious, is the best way to halt errors, such as
form for from (which normal spell checkers never catch).
Douglas Horn is a freelance writer and computer consultant in
Seattle, WA. He specializes in multilingual applications, particularly
those using Japanese and other Asian languages. He can be reached
via CompuServe at 71242,2371.
The Juicy Details
The fifth application in the Visual Tools suite is ImageStream, a
graphics viewing program that handles dozens of graphic file for-
mats, both vector and bitmapped images. The only catch is that
the ImageStream VBX doesn’t work with Delphi! Visual Tools
acknowledges this known bug, but as of this writing, they have
no plans for an update. This is unfortunate, as ImageStream may
have been one of the more useful VBXes in the suite.

Visual Tools did, however, readily accept the fault for the bug
rather than trying to lay the blame on Borland. In fact, in
three test calls to Visual Tools’ technical support line, I found
the service to be excellent. Technical support is free, although
it’s a toll call. Most developers probably don’t mind paying for
the call as long as they don’t spend an eternity in voice mail
purgatory. (Visual Tools also provides Fax, BBS, and
CompuServe technical support.)

The Visual Tools technical support crew answered all my calls
within a minute, and provided correct answers to each ques-
tion. But what impressed me the most was this: instead of
seeming to read from a manual, the Visual Tools support rep-
resentatives seemed to have a deep understanding for the
issues we discussed — something that is becoming a rarity in
the computer industry.
JULY 1995
In general, the suite’s docu-
mentation is also excellent.
First Impression and Formula
One are each extremely well-
documented. Each has a user’s
guide and a separate function
manual that describes pro-
gramming with the compo-
nents as VBXes or C class
libraries and DLLs. The
VisualSpeller documentation is
also appropriate, although the
VisualWriter manual lacks the
finesse of the others.

Visual Tools allows Suite Deal
buyers royalty-free licenses to
distribute applications that
include its components. Only
ImageStream has a more restric-
tive license — limited to 100
run-time copies of a single com-
mercial application per license.

Each tool is easy to install. The
setup program copies the neces-

sary files to the hard drive and then offers a choice between
copying the .VBX files to the \Windows\System directory or
adding the VBX directory to the PATH statement. Once
installed, the components can easily be added to the Delphi
Component Palette.

Besides the component and help files, each control included at
least one sample application. The more complex components
like Formula One included several. Unfortunately, the sample
applications are all in Visual Basic, Access, and C/C++. This is
understandable at present, but hopefully Delphi will soon be
added to the list of “required languages” for all componentware.
Conclusion
Developers Visual Suite Deal from Visual Tools is exceptional. It
takes custom applications to a new level. Even the most mun-
dane of the included tools is worth the price of the package.
Getting Formula One and First Impression at this price almost
makes the buyer feel guilty.

ImageStream will be sorely missed by many developers, but even
without it, the Developers Suite Deal is well worth the money. It
brings much needed functionality to Delphi applications with
minimal programming. Buy this package and use it. The compe-
tition certainly will. ∆
Delphi INFORMANT ▲ 39

TextF i le
Instant Will Score with Windows Programmers
Object Pascal (although Watson

“Instant” continued on page 41

“Example” continued on page 41
Despite the fact that it was
the first Delphi-specific book
on the market, Instant Delphi
Programming by Dave Jewell
(Wrox Press Inc.) does not
suffer from beta screen shots
and the editorial gaffes typical
of a quick-to-market effort.
Instead, Instant is an excellent
introduction to Delphi pro-
gramming for an experienced
developer. (Conversely, Instant
would be a poor choice for a
beginning programmer; it
assumes a good deal of pro-
gramming knowledge.)

Jewell is obviously very com-
fortable with Delphi and
Windows programming, and
liberally peppers Instant with
Windows programming savvy.
It’s full of unexpected treats,
such as a section of tips for
keeping your Object Pascal
code ready for a port to the
32-bit Win‘95. This will be
especially appealing to devel-
opers coming from a
Windows programming back-
ground who are curious about
what Delphi is doing behind
the scenes as it interacts with
Microsoft Windows.

The coding examples are easy
to follow and Jewell breaks
them up with small excursions
into related tidbits of informa-
tion. He carries this off very
well and succeeds at spicing up
the material rather than going
off on tangents. For example,
immediately after a demonstra-
tion of creating a graduated
blue backdrop à la Windows
Help (itself, a nifty trick), Jewell
JULY 1995
makes the important point that
many Object Pascal Canvas
methods (e.g. FillRect and
LineTo) have the same names as
their Windows API counter-
parts. The Object Pascal equiva-
lents are much easier to use, but
this can be confusing.

Instant covers the ground you
would expect from an introduc-
tory book: the Delphi IDE, the
various pieces of a Delphi pro-
ject (e.g. .PAS and .PRJ files,
etc.), managing projects, cus-
tomizing the Delphi develop-
ment environment, program-
ming menus, building MDI
applications, touring the
Component Palette, etc. Instant
features a particularly good
introduction to event handlers
with — again — an eye
towards the Windows details.
There’s also a solid discussion of
the Delphi debugging environ-
ment, and a particularly strong
introduction to Delphi graphics
programming (i.e. working
with the Canvas object).
Another stand-out section
describes how to create custom
components, using descendants
of the TOpenDialog and
TGraphicControl classes.

Instant finishes with a short-but-
clear introduction of using
Delphi as a database front-end,
and two appendices with tips
for programmers coming from
Pascal or Visual Basic. Each
chapter ends with some addi-
tional exercises, so Instant would
lend itself to a classroom setting.

For the lazy or slow-of-hand,
an accompanying diskette
contains just over 1MB of
supporting Delphi files. (Note:
The initial printing of Instant
contained no diskette and had
Que Offers Beginners Imperfect Example

With many step-by-step exam-
ples of real-world program-
ming tasks, Blake Watson’s
Delphi By Example has plenty
to offer the beginning Object
Pascal programmer. Unfortu-
nately, this Que Corporation
book is so badly flawed with
errors and incomplete exam-
ples, that it’s difficult to rec-
ommend. Especially to its tar-
get audience — it is beginners
that will be most confused by
Example’s lapses.

As it claims, Example is for
beginners; accomplished pro-
grammers will find the pace
maddening. However, new
programmers will probably
benefit from Watson’s incre-
mental approach. He warms
up to topics slowly, taking the
reader by the hand through
each statement, and even pro-
viding a historical perspective
on programming concepts
such as loops, objects, and
sub-routines. Again, however,
the explanations are too often
marred by missing or inaccu-
rate instructions.

Also frustrating is that
Example contains sections that
are plainly taken from an earli-
er Pascal book. Statements
such as “Borland’s Delphi has
evolved greatly until it has
become as powerful as any
tool available” reveal the cut-
and-paste approach.

Having said all this, Example
does have something to offer if
you’re willing to put up with its
failings. The emphasis is on
insists on calling it Pascal
throughout), an emphasis pro-
vided by no other beginning
programming book now on the
market. The other introductory
books available (as of this early
June writing) focus on visual
programming. While such
books are important, there’s a
real lack of language-based
books such as Example.
Delphi INFORMANT ▲ 40

JULY 1995

TextFile

“Instant” [cont. from page 40]
a confusing text omission early
in the book, page 38, to be
exact. Wrox Press corrected
the error in subsequent print-
ings and included the diskette.
You can contact Wrox to get
the diskette if you have this
early version of the book.)

Dave Jewell’s Instant Delphi
Programming is a pithy, tip-
studded excursion into Delphi
development that shows a
remarkable level of under-
standing — especially remark-
“Example” [cont. from pa
able for the first book about a
new product.

— Jerry Coffey

Instant Delphi Programming
by Dave Jewell, Wrox Press
Inc., 2710 West Touhy
Avenue, Chicago, IL 60645-
3008; Phone: (312) 465-3559;
Fax: (312) 465-4063.

ISBN: 1-874416-57-5
Price: US$24.95
446 pages, diskette
ge 40]
After a quick tour of the Delphi
interface, Example begins its ex-
ploration of Object Pascal by
introducing variables, sub-rou-
tines, and data conversion. This
is followed by a discussion of
Object Pascal’s branching and
looping structures, and advanc-
ed data types.

The next section tackles ASCII
text and typed files. Conspicu-
ously absent is any discussion of
working with database files. The
final section of Examples discusses
objects and OOP, demonstrates
the as and is operators, and offers
a quick guide to approaching a
development project.

Closing each chapter with
review questions and exercises,
Example is well suited to a
classroom situation. In fact,
with its blemishes, this is
probably the optimal environ-
ment for this book — one
with an expert to help cut the
wheat from the chaff.

Despite its serious flaws, Blake
Watson’s Delphi By Example is
the only Object Pascal primer
available just now. If you’re sat-
isfied with your visual program-
ming skills and need an intro-
duction to Delphi program-
ming with plenty of down-and-
dirty coding examples, this
could be the one for you.

— Jerry Coffey

Delphi By Example by Blake
Watson, Que Corporation,
11711 North College Avenue,
Suite 140, Carmel, IN 46032;
(800) 428-5331.

ISBN: 1-56529-757-1
Price: US$29.99
517 pages
teach yourself ... Will Confound Target Audience
Devra Hall’s teach yourself ...
Delphi (MIS Press) was the
second Delphi book available
in bookstores, and it shows. It
was obviously based on a pre-
release version of Delphi and
contains beta screen shots
throughout. This is particular-
ly inexcusable, since the first
Delphi book on the market —
the far more ambitious Instant
Delphi Programming (also
reviewed in this issue) —
doesn’t have this problem.

First, teach yourself is a slight
book. With large print and
oversize figures, it’s really
shorter than its 309 pages. (In
fact, the font size selected for
the code examples is so large
that many Object Pascal state-
ments are chopped up to such
a degree that they’re hard to
read.) There’s nothing wrong
with this per se, but there are
other books that do a better
job covering the same materi-
al. Essentially an introduction
to visual programming with
Delphi, teach yourself attempts
to cover the same ground as
IDG’s Delphi Programming for
Dummies (reviewed in last
month’s Delphi Informant),
although it doesn’t have the
broad scope of Dummies —
and none of its panache.

The initial four chapters of teach
yourself introduce the Delphi
programming environment —
from the Code Editor and
Object Inspector, to customiz-
ing event handlers. These intro-
ductory chapters suffer the most
from inaccuracies, beta prob-
lems, and typos. This is fol-
lowed by a long-but-shallow
chapter on variables and data
types. The next chapter goes on
to introduce the Canvas object.
It’s an odd specialty topic in this
context, considering the book
neglects so many basic areas of
Delphi. For example, there is no
methodical exploration of the
Component Palette.

On the other hand, teach your-
self does a particularly good job
of describing the construction
of a database form that includes
lookup help. An entire chapter
is devoted to the Database
Desktop and demonstrates cre-
ating and populating a Paradox
table. However, the book incor-
rectly limits Delphi’s database
support to Paradox and dBASE
tables, omitting any of the sup-
ported SQL servers, and —
most surprisingly — InterBase.

The book ends with a per-
functory chapter on
ReportSmith that features a
two-page description of the
Query component. The final
chapter on “Debugging and
Error Handling” is inappropri-
ate for the reader level and
cursory in any case. For the
record, an accompanying
diskette contains just over
2MB of example files and
includes two Visual Basic con-
trols from Sheridan Software.

teach yourself might be appropri-
ate if you’re looking for a book
that takes a very slow approach.
If you find yourself in over your
head with Dummies, teach your-
self might be the book you're
looking for to help you get to
square one with Delphi.
Unfortunately, the numerous
errors and beta version material
will present an additional hurdle
between you and Delphi.

The unpleasant truth is that few
will benefit from this book.
Leave teach yourself ... Delphi in
the bookstore. Even in the
fledgling Delphi-book market-
place, you can do much better.

— Jerry Coffey
teach yourself ... Delphi by
Devra Hall, MIS Press, 115
West 18th Street, New York,
NY 10011; (800) 488-5233.

ISBN: 1-55828-390-0
Price: US$27.95
309 pages, diskette
Delphi INFORMANT ▲ 41

	Table of Contents
	Delphi Tools
	Pinnacle’s Graphic Server Ships
	Sax Software Announces Sax Comm Objects
	Free Trial-Run Components for Delphi from TurboPower
	Access Mainframe Data from PC with TransPortal PRO

	News
	Borland Developers Conference Heads to San Diego
	Delphi Updates Available
	DB/Expo: A Look at Borland’s RAD Pack for Delphi and New dBASE
	Windows Component Resource Goes On-Line
	Borland’s New Companion Products Group includes Delphi/Link and Poet

	The DBTracker Utility
	What DBTracker Does
	Using DBTracker
	Database Events for a Single Table Viewing a Single Record
	Record Locking and Shared Tables
	Database Events for 1-M Linked Tables
	The Source Code
	Event Handlers
	Extending DBTracker
	Conclusion
	Listing One: FormCreate method

	Moving to Local Interbase
	Having What It Takes
	Generating Code with the Database Form Expert
	The Fields of a Table
	Creating a Calculated Field
	Copying a Table to the Server
	Porting the Application
	Using the Visual Query Builder
	From Porting to Upsizing
	Conclusion

	The TField Class: Part II
	Reckoning with Data
	Displaying Calculated Values
	Displaying Lookup Data
	The OnCalcFields Event
	Adding Code to OnCalcFields
	More About OnCalcFields Events
	Creating a Calculation and Lookup Fields Example
	Modifications
	Conclusion

	A Question of Size
	Getting Down to Basics
	The Forms Unit
	The Controls Unit
	The Printers Unit
	The Graphics Unit
	The Dialogs and Buttons Units
	The Classes Unit
	The Menus Unit
	Conclusion

	A Little Memo Help
	But Where’s the Cursor?
	Some Custom Procedures
	Conclusion

	Meet the .DFM File
	The .DFM File
	Editing the .DFM File
	Conclusion

	The Developers Visual Suite Deal
	First Impression
	Formula One
	VisualWriter
	VisualSpeller
	The Juicy Details
	Conclusion

	TextFile
	Instant Will Score with Windows Programmers
	Que Offers Beginners Imperfect Example
	teach yourself ... Will Confound Target Audience

